


Why FEM ?

Predictive Method of Analysis 

Vs 

Experimental Analysis



What is FEM ?

 Determination of the solution for a 

complicated problem by replacing it by 

a simpler one.

 Geometrically complex domain 

represented as a collection of smaller 

manageable domains.



 Solution to these geometrically 

simple domains is easier.

 Replacing the original complex 

geometry as an assemblage of smaller 

simple geometry will   result in only an 

approximate solution.



A1

A2

Upper bound solution

Lower bound solution

Area

Area

No of sides

No of sides

Area = 6 x A2

App.Area < actual 

area

Area = 6 x A1

App.Area > actual area



Where FEM ?









































FEA (finite element analysis), or

FEM (finite element method), was

primarily developed by engineers

using physical reasoning and can

trace much of its origin to matrix

methods of structural analysis.

FEM



The finite element method is a

computer aided mathematical

technique that is used to obtain an

approximate numerical solution to

the fundamental differential and/or

integral equations that predict the

response of physical systems to

external effects.



What is meant by external influence?

When a bar is subjected to an axial pull

‘P’ it elongates

When a metallic rod is heated

its temperature rises

When a beam is subjected to an

external harmonic excitation it vibrates



In the above examples the force ‘P’, or

heat flux ‘q’ or harmonic excitation

force constitute the “external influence”

that causes the system to change.

The elongation, temperature rise or

vibration represents the system’s

response to the external influence.



Why FEM ?
Mathematical modeling to simulate 

physical happening
Any Physical

System

Laws of physics

Mathematical 

modeling

Solution 



When FEM ?

Complex geometry

Complex loading 

Complex material 

properties



• Structural Engineering

•Aerospace Engineering

•Automobile Engineering

•Thermal applications

•Acoustics

•Flow Problems

•Dynamics

•Metal Forming

•Medical & Dental applications

•Soil mechanics etc.

Applications



Weighted Residual Methods - Collocation method

- Sub domain method

- Least squares method

- Galerkin method 

Finite Difference Method

Rayleigh Ritz Technique

Finite Element Method

Boundary Element Method

NUMERICAL SOLUTION 

TECHNIQUES



Mathematical modeling to simulate

physical happening

Any Physical

System

Laws of physics

Mathematical modeling

Solution 

FEM



Material 

Properties

Governing 

Equation   

Field Variable/ 

dependent variable 

Primary variable

Cross-sectional

property

Independent 

variable or 

spatial co-

ordinate

E  A  ( d2u /dx2 )  +   A  =  0

Mathematical modeling



Example of a taper rod subjected a point load ‘P’ 

and its own self weight

P

dx

 A(x)

( + d) A (x) 

 A(x) dx (self weight)

dx



A(x) = A0 - (A0-A1) x/l 

For equilibrium   ( +d) A(x) + A(x) dx - A(X) = 0 --(1)

i.e) dA(x) + A(x) dx  = 0 ---(2)

(3) in (2 ) &  dividing by dx.

from continuum 

mechanics,   =  du / dx

For a bar of constant cross section
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Where    - stress,  - strain &  E - Young’s Modulus
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Variables: 

Primary

eg. Displacement, u

Temperature, T

Secondary

eg. Force EA du/dx

Heat flux –KA dT/dx



Loads:

Volume loads     N/m3 N/m

eg. Self weight, udl

Point loads         N   



1. Boundary Value Problems

2. Initial Value Problems

3. Eigen Value Problems

Problems that could be solved 

by the FEM



A boundary value problem is one where the

field variable (e.g., temperature or

displacement) and possibly its derivatives

are required to take on specified values on

the boundary

(e.g.,

KA dT / dx   = Q,

where K= Thermal conductivity, 

A = area of cross-section, 

Q = Heat flux). 

Boundary Value Problem (BVP)



Boundary conditions:  @ x = 0,       T = T0

@ x = l,    -KA (dt/dx) = 0










  

d

dx
KA(x) 

dT(x)

dx
 +  hp [T(x) -  T  =  0]



An Initial value problem is one

where the field variable and

possibly its derivatives are

specified initially (i.e., at time t=0).

These are generally time dependent

problems.

Examples include   

Unsteady heat conduction

Dynamic problems

Initial Value Problem (IVP)



Initial conditions: @ time t = 0   

i)   du/dt  = C0

where Velocity = du /dt                                                          

ii) displacement u =  a0

T=500 K

T = 300K

t = 0 Sec

T=500 K

T = 

350K

t=1 Sec



Eigen Value Problem (EVP)

An eigen value problem is one

where the problem is defined by a

homogeneous differential equation

that is one where the right hand side

is zero. An important class of eigen

value problems is the ‘Vibration of

Beams” or continuous systems.



Eigen Value Problem (EVP)

First mode shape

Second mode shape

Third mode shape



Physical problems can be classified 

into

(i)   I dimensional 

(ii)   II dimensional 

(iii) III dimensional problems. 

DIMENSIONALITY



AreaVolume3D

CurvesArea2D

PointsLine1D

BoundaryGeometryDomain



When the geometry, material

properties and field variables such as

displacement, temperature, pressure

etc can be described in terms of only

one spatial co-ordinate we can go in

for one-dimensional modeling

I-D PROBLEMS:-

T



When the geometry and other

parameters are described in terms of two

independent co-ordinates we go in for

two-dimensional modeling.

2D PROBLEMS:-

T

T



3D PROBLEMS:-

If the geometry, material properties and

other parameters of the body can be

described by three independent spatial

co-ordinates, we can discretize the body

using 3 dimensional modeling.



Exact and approximate solutions:

An exact solution satisfies the differential 

equation at every point in the domain and 

the boundary conditions on the boundary 

An approximate solution satisfies the 

boundary conditions completely and as 

closely as possible the differential equation  
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R – RESIDUE

u  - approximate solution

uex – u = Error in solution



NUMERICAL SOLUTION OF BVPs

(i)    Choose a trial solution  U(x) for   U(x)

(ii)   Select a criterion for minimising the error

U(x) can be a trigonometric function such as  Asinx

or a logarithmic function log x

or a hyperbolic function

or polynomial functions 
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32



f x a xi
i( ) =  

i=0





U x x( ) =  a  +  a  x +  a  +  a  x1 2 3 4

32

U x( ) =  a   (x) +  a   (x) +  . . . +  a  (x)0 0 1 1 n n  

 0 (1) =  2 then if x a xi
i( ) =  

i=0



U x( ) =  a   (x) +  a   (x) +  . . . +  a  (x)0 0 1 1 n n  



1. Methods of weighted residuals (WRM) 

which are applicable when the governing 

equations are differential equations.

2. Ritz variational method which is applicable 

when the governing equations are variational 

(integral) equations with an associated quadratic 

functional.



The WRM criteria seek to minimise the error 

involved in not satisfying the governing differential 

equations.  

The most popular methods are

(i)    The Collocation method.

(ii)   The Sub-Domain method

(iii)   The Least squares method.

(iv)   The Galerkin method.









COLLOCATION METHOD

For each undetermined coefficient  ai ,  choose a 

point xi in the domain and at each such point called as 

collocation point   force the residual to be exactly zero

ie.  

The collocation points may be located anywhere 

on the boundary or in the domain. 
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THE SUB-DOMAIN METHOD

For each undetermined parameter  choose an 

interval  x,  in the domain.  Then force 

average of the residual in each interval to be 

zero.

1
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1  x1
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LEAST SQUARES TECHNIQUE:

In this method we minimize with respect to 

each undetermined coefficient the integral of 

the square of the residue over the entire 

domain
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THE GALERKIN METHOD

For each undetermined parameter   we 

require that a weighted average of R(x) over the 

entire domain be zero.  The weighting functions 

are the trial functions   associated with the 

generalised coefficients

1

2

 R x i( )  (x) dx =  0



GENERAL WRM

0 =dx  (x)  w)( iXR


i = 1, 2, . . . , n

(i) The Collocation method  - dirac delta function

(ii) The Sub-Domain method - Unity

(iii)The Least squares method - Residue

(iv) The Galerkin method – coefficient of the 

undetermined coefficients in the trial solution







The finite element method is a

computer aided mathematical

technique that is used to obtain an

approximate numerical solution to

the fundamental differential and/or

integral equations that predict the

response of physical systems to

external effects.



When FEM ?

Complex geometry

Complex loading 

Complex material 

properties



Mathematical modeling to simulate

physical happening

Any Physical

System

Laws of physics
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Variables:

Primary

eg. Displacement, u

Temperature, T

Secondary

eg. Force EA du/dx

Heat flux –KA dT/dx

Moment – EI (d2w/dx2)



BOUNDARY CONDITIONS:

 Essential/ Geometric/ Dirichlet 

Boundary conditions

Natural/ Force/ Neumann

Boundary conditions



BOUNDARY CONDITIONS CAN BE OF 

THE FOLLOWING TWO TYPES

 HOMOGENEOUS eg. u(0)= 0 

 NON-HOMOGENEOUS eg. T(0)=80



Loads:

Volume loads     N/m3 N/m

eg. Self weight, udl

Point loads         N



Exact and approximate solutions:

An exact solution satisfies the 

differential equation at every point in the 

domain and the boundary conditions on 

the boundary 

An approximate solution satisfies the 

boundary conditions completely and as 

closely as possible the differential 

equation
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R – RESIDUE

u  - approximate solution

uex – u = Error in solution









NUMERICAL SOLUTION OF BVPs

(i)    Choose a trial solution  u(x) for   u(x)

(ii)   Select a criterion for minimising the error

u(x) can be

a trigonometric function such as  Asinx

or a logarithmic function log x

or a hyperbolic function

or polynomial functions
3

3

2
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The WRM criteria seek to minimise the

error involved in not satisfying the

governing differential equations. The

most popular criteria are

(i)    The Collocation method.

(ii)   The Sub-Domain method

(iii)   The Least squares method.

(iv)   The Galerkin method.



CONSTRUCTION OF A TRIAL SOLUTION

We know that any function f(x) can 

be expanded in a power series as

Thus the function f(x) can be written as a sum

of series of functions with appropriate

constants. Similarly the approximate or trial

solution is sought in the form

i

i xaxf ∑
∞

0=i
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 i  (x) - trial functions or basis functions

- undetermined constants or 

generalised co-ordinates

Generalised Co-ordinates approach

ia

(x) a + . . . + (x)  a + (x)  a = )( nn1100 xu



1. Methods of weighted residuals

(WRM) which are applicable when 

the governing equations are 

differential equations.

2. Ritz variational method (RVM) 

which is applicable when the 

governing equations are variational 

(integral) equations with an 

associated quadratic functional.



ILLUSTRATIVE PROBLEM

Consider the equation

in the domain 1  <  x  <  2

with B.Cs as   i) u(1)   =  2  and  

ii)  
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Let  

BC (i)        

or      --------- (1)

BC (ii)

---------- (2)
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Substituting for a1 and a2 in the expression for

(x),we have

)11(x 1)-(x a + 3)-(x 1)-(x a + 1)-(x 
4

1
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It can be easily seen that the above trial

function satisfies the conditions imposed on

the boundary. Thus the construction of trial

function is over.



WRM APPLICATION

Consider the equation

or

Substituting the trial solution (x) for u(x),

this equation is unlikely to be satisfied.

i.e., the RHS is a non-zero function, R(x)
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dx
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0
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i.e. R(x)   =    

This is called as the ‘Residual’ and is a 

measure of the error involved in not 

satisfying the Governing equation.
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COLLOCATION METHOD
For each undetermined coefficient choose

a point in the domain and at each such

point force the residual to be exactly zero
R x( )
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. . . . . . . . . .
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n

The chosen points are called collocation points.  

They may be located any were on the boundary 

or in the domain.  For the present problem we 

have 2 undetermined coefficients

i.e,
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x1 =  4 / 3  &  x   =  5 / 32
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Substituting in the expression for R(x), we get

Solving the simultaneous equations

therefore,

Choose



THE SUB-DOMAIN METHOD
For each undetermined parameter     

choose an interval  xi in the domain.  Then 

force average of the residual in each interval 

to be zero.

-------------------------------

-------------------------------

a i ,

1

  x
  dx =  0
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n  xn

 R x( )



which yields a system of n residual equations 

which can be solved for ai.The intervals       

are called the ‘sub domains.’ .  They may be 

chosen in any fashion.
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LEAST SQUARES TECHNIQUE

In this method, we minimize with respect to 

each undetermined coefficient the integral of 

the square of the residue over the entire 

domain
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THE GALERKIN METHOD

For each parameter      we require that a 

weighted average of R(x) over the entire 

domain be zero.  The weighting functions 

are the trial functions           associated 

with  

------------------------------

------------------------------
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0 =dx  (x) w)( ixR


i = 1, 2, . . . , n

(i) The Collocation method  - dirac delta function

(ii) The Sub-Domain method - Unity

(iii)The Least squares method - Residue

(iv) The Galerkin method – coefficient of the 

undetermined coefficients in the trial 

solution
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The Collocation method  - dirac delta function
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The Sub-Domain method - Unity
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The Least squares method - Residue
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The Galerkin method – coefficient of the 

undetermined coefficients in the trial solution



Examples of One-Dimensional BVPs

1. Elastic deformation of a bar

A tapered circular bar made of steel is 

suspended vertically with the larger end rigidly 

clamped and the smaller end acted on by a 

pull of 105 N.  The areas at the larger and 

smaller ends are 80 cm2 and  20 cm2 ,  

respectively.  The length of the bar is 3m.  The 

bar weighs 0.075 N/cc.  Young’s modulus of 

the bar material is E = 2 x 107 N/ cm2 .  Obtain 

an approximate expression for the 

deformation of the rod.



A(x) = A1 – (A1- A2) x/l

ie.A(x) = 80 – (80-20)x/300

= (80 – 0.2x)

 = 0.075 N/cm3  

E = 2 x 107 N/cm2
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Given

P =105 N          = 0.075 N/cm3

E = 2 x 107 N/cm2 L = 300 cm   and  

A(x) = (80 - 0.2 x) cm 

Governing equation of the problem is

------- 1

With the boundary conditions

-------- 2



Step  1   Choice of Trial Function

Let  

Applying the B.Cs (1) and (2)  we have

The trial solution takes the form

3

3

2

210  xa +  a + x a + a = (x)u x

3

4

2

-4

10 a 10 x 27 -  a  600  -  10  x 2.5 = a  and   0 = a

] a )10 x (27 - a  x)- (600 - 10 x 2.5 [ x = )( 3

24

2

-4 xxu 

----- 3



Step  II Optimising Criterion using the 

Collocation Method

The residual at any point is given by

] 10 x  0.75 - 10  3 ) x1.8 - x 480 + 10 x (5.4 a 

+ 0.8x) - (280 a + 10 x [-0.5 x 10 x 2  )(

 7-7-24

3

2

-47

xx

xR





Choosing the two points x1 =100 cm & x2 =200 cm and

forcing R(x1) & R(x2) to take zero values, we arrive at a

simultaneous equation for a2 & a3and the solution of

which turns out to be



a

a

2

3

 =  0.21846  x  10

 =  0.72411  x  10

-6

-10

) x- 10 x (27 10 x 0.72411 -                 

 )600(10 x 0.21846 - 10 x [2.5 x = )(

2

410-

 -6-4 xxU 



2)  Heat transfer through Fin
Material - stainless steel

Thermal conductivity K = 17.7  W/mK

Film Coefficient h  = 20.0  W/m2ºK

Thickness at root to = 0.025 m

Length L  = 0.1  m

Assume unit width b  =  1.0  m

Ambient temperature T = 40 C

Wall temperature To = 600 C

Tip temperature TL = 40C = T





Governing equation is










  

d

dx
KA(x) 

dT(x)

dx
 +  hp [T(x) -  T  =  0]

T

T L

( )

( )

0  =  T

 =  T

0



T (x) =  T(x) =  a  +  a  x +  a  x  +  a  x0 1 2 3

32

)01.0(x x a + 0.1)- x(xa + x 5600-600 )(

a 0.01 - a  0.1 - 5600- =  a

600 =  

2

32

321

0

xT

a

Boundary Conditions

Let

Substituting the boundary conditions

------------ 1

-------------- 2



The thickness at a point x-from the root,

t(x)  =   (1-x/L)

Substituting (2) in (1), the residue is given by 










  

d

dx
KA(x) 

dT(x)

dx
 +  hp [T(x) -  T  ] ---------- 3



Collocation Method

Choosing points   X1 = 0.03 and  

X2 = 0.06, and forcing the residue to be 

zero at these points.

i.e.

leads to  a set of simultaneous equations

R X( )

)

1  =  0

R(X  =  02

0 88197

3

.     0.0991686

0.36246    0.0756936
  

a
  =  

8825.6

15730.4

2






















a



Solving for a2 and a3

substituting in (2) yields the approximation for 

the temperature distribution.

The closed form solution is given by

T(x) = 40 - 1502.3 √ x (6)

Comparison

x Tcf(x) Tapp(x)

0.03                   437.5               465.79

0.06                   340.5                327.56

a2   =   28944.51

a    =   - 3464183



RITZ VARIATIONAL METHOD 

(Weak Formulation)

Starting with the equation

The WR becomes

W(x) -- weighting function

i.e.,









in  0 = f(x) - 

dx

du
 (x)  

dx

d

0 =dx   f(x) - 
dx

dU
 (x)  

dx

d
 )( 












 xW

Xb

Xa

 R x( ) w(x) dx



Observations:

u is differentiated twice, while W(x) is

remaining undifferentiated.

 So trial functions should be differentiable at

least twice.

But continuity of derivatives of higher order

is very difficult.

 Hence preferable to reduce the order of

derivatives of u as much as possible



This could be achieved by integration of the 

equation by parts.

The equation can be now recast at

dx 
dx

dW
 

dx

du
 )( -                                                 

)
dx

du
 (x) ( W(x) =dx  )

dx

du
 (x) ( 

dx

d
  )(

Xb

Xa

x

xW

Xb

Xa

Xb

Xa







 
















Xb

Xa

Xb

Xa

xfx




















  
dx

du
 (x)  W(x) +                                  

dx  W(x))( - =dx  
dx

dW
 

dx

du
 )(

Xb

Xa





i.e., B(u,W) = ℓ(W) B is the bilinear and ℓ is the linear 



Recasting of the given differential equation

in this form where the order of derivatives

are traded between the trial function and

the weighting function, thereby weakening

the continuity requirement on the trial

functions is called ‘Weak Formulation’.

The original equation is recast into its Weak

Form.

The Ritz method we take,

Where u(x) is specified, as at the boundary,  

W(x) = 0.

W x( ) =   U (x)



APPLICATION OF VARIATIONAL 

FORMULATION

Illustrative Example for Variational 

Formulation

Consider the elastic deformation of 

a tapered - rod under its weight and also due 

to applied pull at the free-end, considered 

previously.   



The governing equation is

in 0  <  x  <  L

With  B.Cs i) u(0)  =  0  

and

ii)At x=l

d

dx
 [EA(X) 

du

dx
 ]  +  A(x)  =   0

dx
P

(x)du 
 EA(x) = 



0

L

w x ( ) ] { 
d

dx
 [ EA(x) 

du

dx
  +   A(x) }  dx =  0

0

L

EA x x ( ) ( ) 
du

dx
 
dw

dx
 dx =   A  w(x) dx -  w(0) P(0) +  w(L) P(L)

0

L



The WR formulation is

where  w(x)  is the weighting Function 

and u(x) is the trial solution.  Integrating 

by parts and r-arranging, we get

i.e. B(u, w)  =   (w)



since   u(0)  =  0  (specified),  w  =  .u.   at    

x  =  0    vanishes

i.e. W(0)  =  0 P(L)  =  P  - specified

B u EA x( , ( ) w) =   
du

dx
  

dw

dx
  dx

0

L



( )w       =    A(x) w(x) dx +  Pw(L)
0

L

 



Since the bilinear term  B  is symmetric  [B (u, 

w)  =  B (w, u)]  a quadratic functional  I(u) 

exists and is given by  I(u) =  1/2  B (u, u) - (u)

I u A x( ) ( ) =   EA(x) 
du

dx
  dx       -  u(x) dx -    u(L)

0

L 2

0

L

 
1

2
  

strain-energy of deformation External work    External workdone

by distributed load       by concentrated   

load

clearly I(u) gives the Total Potential of the 

elastic system, which is stationary

      I(u) =  0 =   
du

dx
  

du

dx
 dx -   A(c) u(x) dx -    u(L)

0

L

0

L

 EA x( )



we know that w(x) =  u(x)  and threfore

 We get

- the weak form

  
du

dx
 =  

d

dx
 (  u) =  

dw

dx











0

L

EA x ( ) 
du

dx
 
dw

dx
  dx =    A(x) w(x) dx -  Pw(L)

0

L



B u w( , ) =  (w) 



Ritz Method of Solution

Essential boundary condition is u(0) = 0

We get  ao = 0 and

u x( )  =  a  +  a  x +  a  x  +  a  x0 1 2

2

3

3

j

jj

3

1j=

 x= (x)       where                    (x)   = )( jaxu 



The weighting function is w(x)  =           i = 1, 2, 3

substituting in the Weak-form of the governing 

equation.

This leads us to the equation

i = 1, 2, 3

where

 i (x)

j

EA (x) 
dx

 
1

3

 a  
d

dx
 
d

 dx  =   rj
i i

i

 

ri

L

 =    A(x)  (x) dx +  P (L)i i
0

   



on evaluation of the integral within the 

brackets, this reduces to the set of 

algebraic equations.

Where kij  = 

k

k

k

11

21

31

            k              k

            k             k

            k             k

12 13

22 23

32 33

















a

a

a

r

r

1

2

3

2

3

































     =        

r1

0

L

EA x ( ) 
d

dx
 

d

dx
 dxi j 



Solution of this matrix equation leads to

determination of the constants a1,a2 and

a3 there by giving the approximate

solution.

For the given illustrative

example of a tapered rod under its weight

and also due to applied pull at the free-

end

u x a j( )              =   x
j=1

3
j





For the given illustrative example of a

tapered rod under its weight and also due to

applied pull at the free-end

when  i  =  1,   j  =  1

when  i =  1,   j  =  2 . . . .  k12

i =  1,   j  =  2 . . . .   k13



k11  =   EA(x) 
d

dx
 

d

dx
 dx1 1 

k12
2  =   EA(x) 

d

dx
 
d

dx
 dx1 

k13
3  =   EA(x) 

d

dx
 

d

dx
 dx1 

= E(80 - 0.2x).1.1dx = 1.5 x104 E

= E(80 - 0.2x).1.2x..dx = 8.6x108 E

=E(80 - 0.2x).1.3x.2. dx =8.6 x108 E

Where  k21 = ……….        K22 = ………..

k23 = ………. K31 = ………..



5

11 10 x 1.3773 =dx  .x. 0.2x)-(80  =dx   A(x)   =    r

72

22 10 x 1.3773 =dx  ..x 0.2x)-(80  =dx   A(x)   =    r

93

33 10 x 1.3773 =dx  ..x 0.2x)-(80  =dx   A(x)   =    r

7

11 10 x 3  =  L p  =  (L)  p.  =   p
92

22 10 x 9  =  L p  =  (L)  p.  =   p

113

31 10 x 27  =  L p  =  (L)  p.  =    p

15

36

9 45

3

2 4

27

2

3

.

.

.

.

 x 10         3.6 x 10       9.45 x 10

 x 10        1.2 x 10      2.88 x 10

 x 10     3.88 x 10   1.322 x 10

  *  

a

  =    

1.37   x  10    x  10

     x  10 + 9   x  10

4.598 x  10  x  10

4 6 8

6 9 11

8 11 14

1

5 7

7 9

9 11





















































a

a



On solving

=  0.033056  cm

But the Strength of Mat Method give =  0.0378 cm

a

a

a

1

2

3

               =   6.6762   x  10

               =   - 4.946  x 10

               =   6.4736   x  10

-5

-8

-10

U x| 2  =  a  (300) +  a  (300)  +  a  (300)1 2

2

3

3



d

dx

u

dx

2

2 2
 b(x) 

d
 +  c(x) u =  f(x)

2







0  <  x   <  L

Weak form of the above equation reduces to 

B(u,w) = l(w)

|
d

 )((
dx

d
 W -                                                       

 |)(
dx

dw
 + w(x)dx f(x) =dx  ] uw c(x) + 

d
 

d
 )([

2

2

2

2L

0

2

2

2

2

0

dx

w
xb

dx

ud
xb

dx

w

dx

u
xb

L





d u

dx

2

2
 =  M(x)

dM

dx
 =  Q(x)

( ) ( )w f x =  w(x) dx +  
dw

dx
 M(x) |  - w Q(x) |

0

L



Denoting b(x) = 

and

We have



In the case of elastic beams

b(x)  =  EI(x)  - the flexural rigidity

c(x)  =  K       - stiffness of the elastic    

foundation for static problems.

u(x)              - Transverse displacement at 

any point

M(x) - Bending moment

Q(x)              - Shear force



(u(x))   =  )( xw

dw

dx
(x)   =    

du

dx











dx

du
=

Looking at the boundary terms, the terms

containing the weighting function viz. (x)

and dw/ds represent the essential boundary

conditions. i.e.

- Specification of transverse       

displacement,  u

- Specification of slope 



I u( ) =  
1

2
 B (u,  u) -  (u)

1

2

2

 [b(x) 
du

dx
 +  c(x) u  dx -  f(x) u(x) dx -  M(0) (0)2







 ] 

 M(L) (L) -  w(L) Q(L) +  w(0) Q(0)

Since the bi-linear functional B(u, w) is

symmetric, we have a quadratic functional

that exists and is stationary. This functional is

given by

=

This is nothing but the Total Potential of the

system which is a minimum at equilibrium

configuration



LECTURE 3



2

RITZ VARIATIONAL METHOD

(Weak Formulation)

Steps:

i) Bring all the terms of the governing 

equation to one side of the equality

ii) Multiply with a weighting function 

w(x)

iii)Integrate by parts over the limits of 

the domain

iv)Separate linear and bilinear terms 

v) Identify the boundary terms 



3

RITZ VARIATIONAL METHOD 

(Weak Formulation)

Starting with the equation

The Weighted residue becomes

w(x) -- weighting function

i.e.,









in  0 = f(x) - 

dx

du
 (x)  

dx

d

 0 =dx   f(x) - 
dx

ud
 (x)  

dx

d
 )(














 xw

Xb

Xa

 R x( ) w(x) dx



4

Observations:

u is differentiated twice, while w(x) is

remaining undifferentiated.

 So trial functions should be differentiable at

least twice.

But continuity of derivatives of higher order

is very difficult.

 Hence it is preferable to reduce the order

of derivatives of u as much as possible



5

dx 
dx

dw
 

dx

du
 )( -                                                 

)
dx

du
 (x) ( w(x) =dx  )

dx

du
 (x) ( 

dx

d
  )(

Xb

Xa

x

xw

Xb

Xa

Xb

Xa







 
















  vduuvudv    =

We note that the first term is of the form

Where u =

And v =  
dx

du
 (x) 










w(x)



6

The equation can be now recast as
Xb

Xa

Xb

Xa

xfx 















   

dx

du
 (x)  w(x) +dx   w(x))(  =dx  

dx

dw
 

dx

du
 )(

Xb

Xa



dx  
dx

dw
 

dx

du
 )(x

Xb

Xa

Now

is a linear function of both field variable 

and weighting function = B(u,w)
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Xb

Xa

















  

dx

du
 (x)  w(x) 

dx  w(x))( - 

Xb

Xa

xfAnd 

is a function of weighting function alone 

Represents the 

boundary term where 










dx

du
 (x)  Is the flux or secondary 

variable



8

i.e., B(u,w) = ℓ(w) 

B is the bilinear function and ℓ is the linear 

function

Xb

Xa

Xb

Xa

xfx 















   

dx

du
 (x)  w(x) +dx   w(x))( - =dx  

dx

dw
 

dx

du
 )(

Xb

Xa



The above represents the weak form of the 

original Governing equation



9

Recasting of the given differential equation

in this form where the order of derivatives

are traded between the trial function and

the weighting function, thereby weakening

the continuity requirement on the trial

functions is called ‘Weak Formulation’.

The original equation is recast into its

Weak Form.



10

In the Ritz method we take,

which implies that where ever u(x) is specified, 

as at the boundary,  w(x) = 0.

Represents the variation of 

the field variable.  

(x) = )( uxw 

(x) = )( uxw 



11

APPLICATION OF VARIATIONAL 

FORMULATION

Illustrative Example for Variational 

Formulation

Consider the elastic deformation of 

a tapered - rod under its weight and also due 

to applied pull at the free-end, considered 

previously.   
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The governing equation is

in 0  <  x  <  L

With  B.Cs i) u(0)  =  0  

and

ii)At x=l P   ] 
dx

du
 [EA(x) 

0  =  A(x) +  ] 
dx

du
 [EA(x) 

dx

d
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0

L

w x ( ) ] { 
d

dx
 [ EA(x) 

du

dx
  +   A(x) }  dx =  0

0

L

EA x x ( ) ( ) 
du

dx
 
dw

dx
 dx =   A  w(x) dx -  w(0) P(0) +  w(L) P(L)

0

L



The WR formulation is

where  w(x)  is the weighting function and 

u(x) is the trial solution.  Integrating by 

parts and r-arranging, we get

i.e. B(u, w)  =  l (w)



14

since   u(0)  =  0  (specified),  w  =  u   at    

x  =  0    vanishes

i.e. w(0)  =  0 P(L)  =  P  - specified

Hence P(0) w(0) term vanishes 

B u EA x( , ( ) w) =   
du

dx
  

dw

dx
  dx

0

L



( )w       =    A(x) w(x) dx +  Pw(L)
0

L

 
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Since the bilinear term  B  is symmetric ie. 

[B(u,w)  =  B (w,u)]  a quadratic functional  I(u) 

exists and is given by  I(u) =  1/2  B (u, u) - l(u)

I u A x( ) ( ) =   EA(x) 
du

dx
  dx       -  u(x) dx -    u(L)

0

L 2

0

L

 
1

2
  

strain-energy of deformation External work    External workdone

by distributed load       by concentrated   

load

clearly I(u) gives the Total Potential of the 

elastic system, which is stationary

u(L)   -dx  u(x) A(c)  -dx  
dx

du
  

dx

du
 )( = 0 = I(u) 

L

0

L

0

  xEA
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we know that w(x) =  u(x)  and threfore

 We get

- the weak form

  
du

dx
 =  

d

dx
 (  u) =  

dw

dx











0

L

EA x ( ) 
du

dx
 
dw

dx
  dx =    A(x) w(x) dx -  Pw(L)

0

L



B u w( , ) =  (w) 
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Advantages of the weak form

Order of the differential equation becomes 

half of that in the original equation.

Hence continuity requirements on the 

assumed solution is reduced.

Lower order polynomial can be assumed 

for the approximate solution.
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The Natural Boundary condition 

becomes embedded in the weak form

Hence the trial solution needs to satisfy 

only the essential boundary condition
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Ritz Method of Solution

Essential boundary condition is u(0) = 0

We get  ao = 0 and

u x( )  =  a  +  a  x +  a  x  +  a  x0 1 2

2

3

3

j

jj

3

1j=

 x= (x)       where                    (x)   = )( jaxu 
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The weighting function is w(x)  =           i = 1, 2, 3

substituting in the Weak-form of the governing 

equation.

This leads us to the equation

i = 1, 2, 3

where

)( xi

j

ji
j

3

1

r  =dx   
d

 
dx

d
 (x)  a 

dx
EA

j






(L) P +dx  (x)  A(x)   = jj

0


L

jr
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on evaluation of the integral within the 

brackets, this reduces to the set of 

algebraic equations.

Where kij  = 

k

k

k

11

21

31

            k              k

            k             k

            k             k

12 13

22 23

32 33

















a

a

a

r

r

1

2

3

2

3

































     =        

r1

0

L

EA x ( ) 
d

dx
 

d

dx
 dxi j 
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Solution of this matrix equation leads to

determination of the constants a1,a2 and

a3 there by giving the approximate

solution.

u x a j( )              =   x
j=1

3
j


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For the given illustrative example of a

tapered rod under its weight and also due to

applied pull at the free-end

when       i  =  1,   j  =  1. . . . k11

when  i =  1,   j  =  2 . . . .  k12

i =  1,   j  =  2 . . . .   k13

and so on
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dx 
dx

d
 

dx

d
 EA(x)  =  11

300

0

11


k

dx 
dx

d
 

dx

d
 EA(x)  =  21

300

0

12


k

dx 
dx

d
 

dx

d
 EA(x)  =  31

300

0

13


k

= E(80 - 0.2x).1.1dx = 1.5 x104 E

= E(80 - 0.2x).1.2x.dx = 3.6x106 E

=E(80 - 0.2x).1.3x2 dx =8.6 x108 E
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Similarly   

k21 = 3.6x106 E k22 =1.2 x109 E

k23 = 2.88 x1011 E k31 = 8.6 x108 E

k32 = 2.88 x1011E      k33 = 1.322 x1014 E
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5

11 10 x 1.3773 =dx  .x. 0.2x)-(80  =dx   A(x)   =     r

72

22 10 x 24 =dx  ..x 0.2x)-(80  =dx   A(x)   =     r

93

33 10 x 4.598 =dx  ..x 0.2x)-(80   =dx   A(x)   =     r

7

11 10 x 3  =  L P  =  (L)  P.  =   p
92

22 10 x 9  =  L P  =  (L)  P.  =   p

113

31 10 x 27  =  L P.  =  (L)  P.  =    p





















































119

97

75

3

2

1

14118

1196

864

10 x  2710 x  4.598

10   x  9+10     x  4.2

10   x  310   x  1.37

   =  

a

 *  

10 x 1.322  10 x 2.88    10 x 45.9

10 x 2.88     10 x 1.2       10 x 6.3

10 x 9.45      10 x 3.6        10 x 5.1

a

a
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On solving

=  0.033056  cm

But the Strength of Material Method gives 

deflection at the tip as =  0.0378 cm

a

a

a

1

2

3

               =   6.6762   x  10

               =   - 4.946  x 10

               =   6.4736   x  10

-5

-8

-10

3

3

2

21300 (300) a + (300) a + (300) a =| xU
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THE FINITE ELEMENT METHOD

or NODAL APPROXIMATION METHOD:

The basic concept behind the Finite 

element method is “going from part to 

whole”

Name “FINITE ELEMENT” coined by 

Clough

Fitting of a number of piecewise 

continuous polynomials to approximate the 

variation of the field variable over the entire 

domain   
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STEPS INVOLVED IN THE FINITE ELEMENT 

METHOD:

Discretisation of the structure: In this step the 

given structure is divided into subdivisions or 

elements. Depending upon the problem we 

may choose I D, II D or IIID elements. 
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I D elements
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Constant strain triangular element Bilinear Rectangular element

Linear strain triangular element Eight noded quadratic quadrilateral elements 

II D elements
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1 2

3

4

Linear Quadrilateral element
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III D elements
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Selection of suitable displacement 

model: 

We make an assumption as to the 

variation of the unknown solutions over 

the element. In general, the field variable 

(example, temperature, displacement etc) 

is assumed to vary linearly or quadratically 

or cubically. 
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Displacement model associated with each 

element



36Length l

Field 

variable 

u
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Derivation of elemental matrices and 

load vectors:

From the assumed displacement model, 

the elemental stiffness matrix [K]e and 

load vector [P]e of the element are to be 

derived using either equilibrium methods 

or a suitable variational principle.
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Assembly of elemental equations to obtain 

overall stiffness matrix: the individual element 

stiffness matrices and load vectors are to be 

assembled in a suitable manner to get the 

overall stiffness equation which is expressed 

as 

[ K ] { u }  =  { P } 

where [K] is the assembled stiffness matrix

{u} is the vector of unknowns or nodal

displacements

{P} is the vector of nodal forces for the

complete structure
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Imposition of boundary conditions: The 

Boundary conditions could now be            

incorporated to get the reduced equations.

Solutions for the unknown nodal 

displacements: The elemental matrices, 

on assembly, yield a set of equations, 

which could be expressed as a set of 

matrices, which could be solved using any 

iterative procedure or numerical method.
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Computation of elemental strains 

and stresses: From the unknown 

displacements,  the element strains 

and stresses can be computed by 

using the necessary equations of 

solid or structural mechanics.
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1

2

3

2

1

10 kN

A 1 = 2sq.cm       

A 2 = 1sq.cm

L1 = 10 cm

L2 = 10cm

E= 2x107N/cm2 EBC:

U1 = 0

Pl = 10kN
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[K]1 = EA1 1   –1

ℓ1 –1     1

[K]1 =    4 x 105 – 4 x 10 5

–4 x 105 4 x 105

[K]2 = EA2 1   –1

ℓ2 –1     1

[K]2 =     2 x 105 –2 x 105

–2 x 105 2 x 105



43

4        – 4          0 

[K]g =  105 –4       4 + 2       -2 

0       –2            2

The assembled stiffness matrix is given by
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{P}2 =     0

1

{P}1 =      R

0   

where  R is the reaction at the fixed end

The load vectors are

{P}   =     R

0

10
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2 x 105 2    -2      0        u1  R

-2     3     -1       u2 =      0

0   -1      1       u3 10

The overall equilibrium equation is given by

[K] {u} = {P}

or
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2 x 105 2    -2      0        u1  R

-2     3     -1       u2 =      0

0   -1      1       u3 10

2 x 105 3  -1     u2 0

-1  1     u3 =  1

u2 = 0.25 x 10-4 cm

u3 = 0.75 x 10-4 cm
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Strain for element 1 = Є1

= u/ x for element 1 

= (u2 – u1)/ ℓ1

= 0.25 x 10-5

Strain for element 2 = Є 2 

= u/ x for element 2 

= u3 – u2/ ℓ2

= 0.50 x 10-5
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The stresses in the elements are given by

Stress in element 1 = 1 = Є 1E1

= (0.25 x 10-5) (2 x 107)

= 5 kN/cm2

Stress in element 2 = 2 = Є 2E2

= (0.50 x 10-5) (2 x 107)

= 10 kN/cm2
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COMPUTATION OF REACTION AT FIXED END:

2 x 105 [2 * u1 – 2 * u2] = R 

Substituting for u1and u2 we get 

Reaction R= 10kN
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NODAL APPROXIMATIONS

In general problems arise in 

engineering where we seek an approximation 

u (x, y, z) to some exact function  u(x, y, z) to 

any desired level of accuracy,  i.e.

u (x, y, z)           =       (x, y, z)u

Many times the approximate function is

obtained as a series expansion of some

known function with undetermined

coefficients. e.g.
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(x) =     (power series)

or u(x)  =                       (Trigonometric series)

In these expansions ai - s are called the

“generalised coordinates”

i

i

0

 xa


n

i

sin  x) b +ix  cos (a ii

1




n

i

u
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u(xi) = ui i = 1,2,.....r. Forcing the 

approximations to take on these specified 

values at the specified points, we have

r. . . . . . 2, 1, = i                       

1)(n  x                                                               

.

.

.

a

      >   x. . .       x    x1 <  =  

3

2

1

1

i

2

ii



































n

n

i

a

a

a

u
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Taking r  =  n.  We have

where the vector   of ai s    and matrix         are 

known

1)(n  x                                   1)(n  x       

.

.

.

a

           ]P [  =            

.

.

.

2

1

n

2

1





























































nn a

a

u

u

u

{ }f i

[ ]Pn
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There, if       is non-singular,































































nn u

u

a

a

a

.

.

.

u

   ][P  =    

.

.

.

2

1

1

n

2

1
[ ]Pn

   1)(n x         n)(n x                    n)  x  (1                                     

{u}         ][P   >     x. . . .  x   x      1         =     )( 1

n

1-n2 xfand

1)(n  x                     n) x (1                       

.

.

.

u

          > N . . . . N  N  

2

1

n21

































nu

u

=



55

The last equation expresses the

approximation in terms of the function values

at selected points, as compared to the

expansion in terms of the generalised

coordinates.

 These selected points are called the

“nodal points” and {f} is called nodal-

variable vector.

 The functions Ni(x) are called the shape

functions.

 Finally u(x)=Ni(x)ui is called the Nodal

Approximation. Ni – s are also called as

interpolation functions.
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21 u  =   u(1)  and  u

=      Derivation of Shape function for two 

noded element:

1) Let u(x)   =  ai + a2x    in 0  <  x  < l

= <1    x> a1

a2

u(0)   =    

Therefore  a1 =  u1

a1 +  a2 l     =  u2

In matrix form   1      0   a1     =   u1

1      l     a2          u2
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u

u

1

2









1              0

1              











a

a

1

2









=
*

a

a

1

2









1
1

              0

1              













u

u

1

2









= *


















1
           

1

0              1
u

u

1

2









=

*
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u(x)  =  <  1   x     >









 1/       1/-

0              1









2

1

u

u

>     x/         )x/  - (1   
u

u

1

2









1   =    N   +    N                                               

1 = )(N   0. = )0(N                       x/=        (x) N

0 = )(N   1. = )0(N                  x/- 1  =        (x) 

21

121

111



N

=

u1

< N1        N2>   

u2

= = N1 u1 + N2u2
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It can be verified that

=      0 i   j

=      1 i  =   j

=      

(Kronecker Delta Function)

.

N xi j ( )

ij

1 2 1 2

u1

u2N1 N2

1
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To provide for the possibility of a constant 

or uniform field when f is constant at all 

points in the domain

We have

f1 = f2 = ……. = fn = c

(x)  C  =  f (x)   =  C = f(x)    
n

1j=

i

n

1j=

ii NN 

1  =  (x) N      i

n

1j=



The above properties are very 

important properties of shape 

functions.
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1 2

1
1

X=0

X

=

l

x = l
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2) Let  u(x) =    

=     

Taking  x1 = 0, x2 = l/2 , x3 = l We have

a1

2  +   a  x  +   a  x2 3



















3

2

1

2

a

a

a

    >     x      x    1    






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
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


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2

1

u

u

u


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










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                               1

/4           /2             1

0               0                1





















3

2

1

a

a

a

















3

2

1

a

a

a



















222 2/         4/-       / 

1        4/            3/-

0              0                    





2

/

1

















3

2

1

u

u

u

=

=

Shape functions for 

quadratic elements
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















3

2

1

u

u

u

22

3

22

2

22

1

/2x  +    3/-  =      (x) N

/4x  -     4x/  =      (x) N

/2x  +     3x/  -   1  =      (x) N







0  =  )( N          0  =   /2)( N        1  =   (0) N 111 

0  =  )( N         0  =   /2)( N         1  =   (0) N 111 

0  =  )( N       0  =   /2)( N        1  =   (0) N 111 

1      =     N   +   N  +  N 321

u(x) = < N1 N2 N3 >
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Finite Element Formulation

• In FEA, we use the nodal approximation to 

specify the unknown function in terms of its 

values at selected ‘nodal points’, through a 

Nodal Approximation

1

( ) ( )

" " " "

' ' int

n

j j

j

j

j

u x N x u where

N s are the Interpolating or shape functions

u s are the values of u t these nodal po s

It is seen that the shape functions automatically

satisfy the specified essential boundary conditions

The weight











; ( ) ( ) 1,2,...i

ing functions are chosen from the shape

functions x N x i n  
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The governing equation is

in 0  <  x  <  L

With  B.Cs i) u(0)  =  0  

and

ii)At x=l P   ] 
dx

du
 [EA(x) 

0  =  A(x) +  ] 
dx

du
 [EA(x) 

dx

d
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 w(0)P(0) - P(L)w(L) dx   w(x)A(x)   =dx   
dx

dw
 

dx

du
 )(

L

00

 xEA

L

Weak form is given by

Substituting in the weak form 

u(x) = N1u1 +N2u2

And  w(x) as N1 first and then N2 we get a 

system of two equations in two unknowns 

namely u1 and u2
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[ ] ] |Ke     [u    =   | re e

dx 
dx

dN
 

dx

dN
 )(EA(x)   =    

ji

h

0

e

xK e

ij 

jj

h

0

P +dx  N)(A  =      
e

xr e

j 
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dx 
dx

dN
 

dx

dN
 EA(x)   =    11

l

0

11 
eK

= ∫ E A (-1/l)(-1/l)dx

= EA/l2 ∫ dx 

= EA/l
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dx 
dx

dN
 

dx

dN
 EA(x)   =    21

l

0

12 
eK

= ∫ E A (-1/l)(1/l)dx

= -EA/l2 ∫ dx =  - EA/l






















12

21

2 2

2

6
1

AA

AAl

r

r 

= ∫ E A (-1/l)(1/l)dx

= -EA/l2 ∫ dx = - EA/l
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dx 
dx

dN
 

dx

dN
 EA(x)   =    22

l

0

22 
eK

= ∫ E A (1/l)(1/l)dx

= EA/l2 ∫ dx 

= EA/l

Stiffness matrix for 2 noded element 

K =  EA   1    -1

l -1     1
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jj

h

0

P +dx  NA  =      
e


e

jr

dx  NA  =      1

h

0

1

e


er = γ Al/2

dx  NA  =      2

h

0

2

e


er = γ Al/2

{r}= γ Al/2  1

1
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A(x) = A1 – (A1- A2) x/l

ie.A(x) = 80 – (80-20)x/300

= (80 – 0.2x)

 = 0.075 N/cm3  

E = 2 x 107 N/cm2
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If for the entire domain, there are only two

nodal points, they also happen to be the

boundary points x = 0 and x = L n = 2 and ij =

1, 2. The above equation reduces to

[K] =

2 x 2 2 x 1 2 x 1









2

1

u

u









2

1

r

r
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Example

Consider the tapered rod problem

L =300cm

u1 = 0 P1 = R

P2 = P 

N1(x) = 1 – x / L N2(x) = x / L 

dN

dx

1  =  -  
1

L

dN

dx

2  =  -  
1

L

 = 0.075 N/cm3  

E = 2 x 107 N/cm2
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K11 dx 
L

1
-  0.2x)-(80E

2300

0











E

L2

]
2

0.2L
 - [80L 

L

E 2

2

L) 0.1 - (80 
L

E
6

E
     =      

300

50E

K12 K 21
6

E

K 22

E

6

A(x) = 80 – 0.2x

= = (80-.02x) dx

=

= =

=

=

=

=
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[K] = 

r1 =

= 675 + R

r2 = 

6

E 1         -1

-1          1











0

L

 (80 -  0.2x)  (1- x / L)  dx +  R

5

300

0

10 +  450   = 

  P+dx    x/L)(  0.2x) - (80
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r

K

2

22

Apply the Boundary Condition u1 =  0,  this 

reduces to

k22u2=  r2

u2=            =  0.03 cm

This is the value of a uniform rod 

with average area under the pull.  This 

compares with the Ritz method discussed 

earlier with a cubic polynomial which worked 

out to

u2=   0.033056 cm
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)(

)(

)(

3

3

2

21

2

21

1

xuxaxaxaa

xuxaxaa

xuxaa

o

o

o







Linear displacement     model

quadratic displacement model

cubic displacement model
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LECTURE 4
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THE FINITE ELEMENT METHOD

or NODAL APPROXIMATION METHOD:

The basic concept behind the Finite 

element method is “going from part to whole”

Name “FINITE ELEMENT” coined by 

Clough

Fitting of a number of piecewise continuous 

polynomials to approximate the variation of 

the field variable over the entire domain   
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STEPS INVOLVED IN THE FINITE ELEMENT 

METHOD:

Discretisation of the structure

Selection of suitable displacement model

Derivation of elemental matrices and load              

vectors

Assembly of elemental equations to obtain 

overall stiffness matrix
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STEPS INVOLVED IN THE FINITE ELEMENT 

METHOD:…contd

Imposition of boundary conditions

Solutions for the unknown nodal 

displacements

Computation of elemental strains and 

stresses
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1

2

3

2

1

10 kN

A 1 = 2sq.cm       

A 2 = 1sq.cm

L1 = 10 cm

L2 = 10cm

E= 2x107N/cm2 BC:

U1 = 0

Pl = 10kN



6

u1

u2

u3

N1u1 + N2u2

N1u2 + N2u3
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u(x)   =  a1 + a2x

u(x)  = N1 u1 + N2u2

Here Ni s are called Shape functions or 

Interpolation functions

Shape functions are used to interpolate 

the field variable over the  element in 

terms of nodal values of the field variable 

1   =    N   +    N                                               

1 = )(N   0. = )0(N                       x/=        (x) N

0 = )(N   1. = )0(N                  x/- 1  =        (x) 

21

121

111



N
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It can be verified that

=      0 i   j

=      1 i  =   j

=      

(Kronecker Delta Function)

.

N xi j ( )

ij

1 2 1 2

u1

u2N1 N2

1
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To provide for the possibility of a constant 

or uniform field when u is constant at all 

points in the domain

We have

u1 = u2 = ……. = un = c

(x)    =  u (x)   =   = u(x)    
n

1j=

i

n

1j=

ii NcNc 

1  =  (x) N 

N  N   

i

n

1j=

21





or

ccc

The above properties are very important 

properties of shape functions.
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• In FEA, we use the nodal approximation to 

specify the unknown function in terms of its 

values at selected ‘nodal points’, through a 

Nodal Approximation
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Now let us consider the numerical example 

of the tapered beam whose area of cross 

section varies uniformly from A1 to A2 at the 

free end and subjected to its own self 

weight and a point load at the end.



1212

A(x) = A1 – (A1- A2) x/l

ie.A(x) = 80 – (80-20)x/300

= (80 – 0.2x)

Specific weight  = 0.075 N/cm3

Young's Modulus E = 2 x 107 N/cm2

Example
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The governing equation is

in 0  <  x  <  L

With  B.Cs i) u(0)  =  0  

and

ii)At x=l P   ] 
dx

du
 [EA(x) 

0  =  A(x) +  ] 
dx

du
 [EA(x) 

dx

d
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Weak form is given by

Substituting in the weak form 

u(x) = N1u1 +N2u2

And  w(x) as N1 first and then N2 we get a 

system of two equations in two unknowns 

namely u1 and u2

 w(0)P(0) - ))w(P( dx   w(x)A(x)   =dx   
dx

dw
 

dx

du
 )(

00

llxEA

ll

 
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 w(0)P(0) - ))w(P( dx  N A(x)                                      

  =dx   
dx

dN
 

dx

)d(N
 )(

1

0

12211

0

ll

uNu
xEA

l

l











 w(0)P(0) - ))w(P( dx  N A(x)                                      

  =dx   
dx

dN
 

dx

)d(N
 )(

2

0

22211

0

ll

uNu
xEA

l

l











----1

----2
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 w(0)P(0) - ))w(P( dx  N A(x)                                      

  =dx  
dx

dN
 

dx

)d(
 )(    dx   

dx

dN
 

dx

)d(N
 )(

1

0

2
12

0

1
11

0

ll

u
N

xEAuxEA

l

ll











 w(0)P(0) - ))w(P( dx  N A(x)                                      

  =dx  
dx

dN
 

dx

)d(
 )(    dx   

dx

dN
 

dx

)d(N
 )(

2

0

2
22

0

1
21

0

ll

u
N

xEAuxEA

l

ll










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   ee r  =   u    ][ eK

dx 
dx

dN
 

dx

dN
 EA(x)   =    

ji

0


l

e

ijK

dx  N)(A  =      j

0

xr
l

e

j 

These 2 equations can be written in matrix form as
































2

1

2

1

2221

1211

r

r

u

u
  

KK

KK

Where
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1N
l

x
N   =  2l

x
= 1 -

dN

dx

1

l

1 dN

dx

2

l

1
= =  -

We know that the shape functions for a 

two noded element are given by 
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K11 dx 
dx

dN
 

dx

dN
  EA(x) 11

0


l

= 









  x
A - A

 - A 21
1

0
l

E

l

dx 
1

2











l

= 

l

AAE

l

E

2

)(
)

2

A
  +  

2

A
(  2121 

= 



2121

= K12
dx 

dx

dN
 

dx

dN
  A(x) 21

0

E

l



= 

= x
l

E

l









  
A - A

 - A 21
1

0

)
2

A
  +  

2

A
(  21

l

E


K12
K 21= 

 
1










l
dx 

1









l

l

AAE

2

)( 21 
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K 22

[ ]Ke









1               1-

1-             1 
           

2

A + A
 21

l

E

Therefore the element stiffness matrix will be

= 

= dx 
dx

dN
 

dx

dN
  A(x) 22

0

E

l



= 

= 








  
A - A

 - A 21
1

0
l

E

l

)
2

A
  +  

2

A
(  21

l

E

dx 
1

2










l

l

AAE

2

)( 21 
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Similarly the element nodal load vector will be

dx    N )( 1

0

1 
l

xAr 

dxA

l

 ] )
l

x
 - (1 

l

)A - (A
 - [ 21

1

0 







 = 

= 

= 

= 









 ll
6

A

3

A 21

dx    N )( 2

0

2 
l

xAr 

dxA

l

 ] )
l

x
 ( 

l

)A - (A
 - [ 21

1

0 







 









 ll
3

A

6

A 21



2424

Therefore the assembled load vector will be

Case - I: Discretize the Tapered Bar into 3 

elements.

The length of each element        =  100 cm.''l

=  er
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






















7070

7070

1001               1-

1-             1 
     

2

A + A
 21

1

1 E

l

E
K
























5050

5050

1001               1-

1-             1 
     

2

A + A
 32

2

2 E

l

E
K
























3030

3030

1001               1-

1-             1 
     

2

A + A
 43

3

3 E

l

E
K
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[ ]

]

]

K1

            [K

                          [K

2

3

















= [K]

The global stiffness matrix will become

100

E






















30          30-                                

30-       30+50     50-                

50-          50+70     70

70-          70 

100

E






















30          30-             0              0   

30-       80            50-              0  

0            50-          120          70

0             0              70-          70 
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




















12

21

2 2

2

6
1

AA

AAl

r

r 

















6

200
6

220

 100 x 

















6

80
6

100

 100 x 

















6

140
6

160

 100 x 

 1r

 2r  3r
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Similarly the assembled global load vector 

will become

[R] = +        
















|r|                        

|r|           

||

3

2

1r

















3

2

1

P                        

P           

P
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The global load vector is

[R] =  +





































6

80
                                  

6

100

6

140
                     

6

160

6

200
          

6

220

  100 x 

 R

 O

 O

 P

































































































P

O

O

R

    +        

80  

240 

360 

220 

  
6

100  x  =
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Now the total system of equation will be

E

100

          - 70

-70          120      - 50

                 50        80       - 30

                          - 30          30

70























 u

 u

 u

 u

1

2

3

4























 
















































P

O

O

R

    

80  

240 

360 

220 

  
6

100  x  
=

Now applying the Boundary conditions i.e. u1 = 0 .. 

Delete the first row and first column of elements and 

the system of equation will reduce to

  120      - 50

 - 50        80       - 30

               30          30

















 u

 u

 u

2

3

4















 
































P

O

O

    

80  

240 

360 

  
6

100  x  
=
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The data are E = 2 x 107 N/cm2  = 0.075 N/cc 

and P = 1 x 105 N.

On solving the above equation we get

u4 =  0.035501997  cm

u3 =  0.018818567  cm

u2 =  0.008778557 cm

The deflection at mid section of the bar by 

interpolation is

=  0.01379856  cm
2

u + u
  = U 32

50x
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Example 2 Let us consider the discretization 

with 2 elements

h = 150 cm

The assembled stiffness matrix will be

[K] = 
E

150

  65        - 65

           65 + 35     

                      - 35    35



















65

Similarly the assembled load vector will be

[R] = +    x 150 

210

6

  +    
120

6

                 
90

6

180

6





























 R

 O

 P


























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After applying the B.Cs the global system of 

equation will become

=      

On solving the above set of simultaneous 

equations we get

u3 =0.033068406  cm  (Tip displacement)

u2 =0.011607692  cm  (Mid section 

displacement)

E

u
150

3

  

100     - 35

-35        35

  

u 2































 x 150  

240

6

80

6



















 O

P
















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[ ]Ke










1               1-

1-             1 
           

2

A + A
 21

l

E

[ ]Ke










1               1-

1-             1 
     

l

EA

For a bar of constant cross section A1= A2

= 









1

1

2

Al er
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Example 3
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42

WEAK FORM OF GOVERNING 

EQUATION FOR THERMAL 

PROBLEMS
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where

k =  Thermal conductivity coefficient

h =  Thermal convection coefficient

A =  Area of cross section subjected to 

CONDUCTION

p=  Perimeter is the area exposed to 

CONVECTION

T =  Atmospheric Temp. ,  T    =  Variable

Q   =  Heat Source
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(q + dq) – q + hp dx(T - T )=0

by dx we get

dq     + hp(T - T ) = 0

dx

d(-kA(x) dT )  + hp(T - T ) =0

dx          dx
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Boundary conditions:

i) At x= 0 T = To

ii) At the free end  any one of the following 

three possible boundary conditions could 

be specified

1. If free end is insulated _ kA dT/dx = 0

2. If free end is open to atmosphere

_ kA dT/dx|=l = hA(T- T)

3. Specified temperature T(l) = Tl



47

0)( 







 TThp

dx

dT
KA

dx

d

  0)()( dxxRxw

The weak form can be obtained by

The governing equation for heat transfer in 

a one dimensional problem is given by

For a bar of length ‘l’ with wall temperature ‘T’ 
the weak form of the governing equation 
becomes
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 
















 

l

dxTThp
dx

dT
KA

dx

d
xw

0

0)()(

  







 

l l

dxTThpxwdx
dx

dT
KA

dx

d
xw

0 0

0)()()(

1

dx
dx

dT
KA

dx

d
xwI

l

 









0

1 )(

)(xwu  dwdu 

dx
dx

dT
KA

dx

d
dv 










dx

dT
KAv 

Let

and
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 vduuvI1

dx
dx

dw

dx

dT
KA

dx

dT
KAxwI

ll

 


















00

1 )(

0)()()(
000


















   dxTThpxwdx

dx

dw

dx

dT
KA

dx

dT
KAxw

lll

Substituting the above term in equation 1, 

we get
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0)()()()(
0000









  dxTxhpwdxxTxhpwdx

dx

dw

dx

dT
KA

dx

dT
KAxw

llll

 )()()()()(
000

   TThAxwdxTxhpwdxxTxhpwdx
dx

dw

dx

dT
KA L

lll

Boundary term    B1(T,w)         B2(T,w)             l(w)
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Substituting in the weak form 

T(x) = N1T1 +N2T2

And  w(x) as N1 first and then N2 we get a 

system of two equations in two unknowns 

namely T1 and T2 which can be written as
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





















































2

1

2

1

2221

1211

2

1

2221

1211

    
q

q

T

T

KK

KK

T

T

KK

KK

convcond

Where  dx
dx

dN
 

dx

dN
 kA(x)    =   K

ji

l

e

ijcond 
0

 dx NhpT      =  q j

e

j

l

 

0

dxN Nhp(x)    =   K ji

l

conv

e

ij 
0
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Let the elements be of equal length   

The element matrices are

l 


























hA          

         
  +  

        

        
 

hP l
  +  

          -

       - 
 

l

KA
] = [K e

0

00

21

12

611

11





















hA T
    +  

hPl T
]   =  [f e

0

1

1

2
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5555

Boundary conditions:

at  x  =  0,T(0) = T 

at  x  =  L,

conduction  =  convection loss

For a typical linear element

) - T =  hA (T  
dx

dT
KA ll 

(x/l)     =    N

 - (x/l)     =    N

J

I 1
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Let the elements be of equal length   

The element matrices are

 cml =  2


























hA          

         
  +  

        

        
 

hp l
  +  

          -

       - 
 

l

kA
] = [K e

0

00

21

12

611

11





















hA T
    +  

 Thpl
]   =  [qe

0

1

1

2
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The element matrices for ELEMENT (1),

(2) & (3) are


















20

20

66666675

66756666
} =   ;  {q

.      .-

.    -.
 = ][K e

e

therm


















20

20

66703330

33306670
} =   ;  {q

.     .

.    .
 = ][K econv

e


















20

20

66

66
} =   ;  {q

     

    
 = ][K econd

e
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The element matrix for ELEMENT (4) is


















28

20

06676675

66756666
} =   ;  {q

.     .-

.    -.
 = ][K etherm

e

  
     

    
 = ][K cond

e










66

66























400

00

66703330

33306670

.
  

.     .

.    .
 = ][K conv

e


















8

0

20

20
} =   {qe
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On assembly we get

 6.667           - 5.667             0               0              0

-5.667              13.33       - 5.667           0              0

     0              - 5.667         13.33      - 5.667           0

     0                    0           - 5.667       13.33     - 5.667

     0                    0                 0         - 5.667       7.066  

  *  

T1

T2

T3

T4

T5

  =   

    20  

20 + 20

20 + 20

20 + 20

    28










































































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By applying Boundary condition at

at x  =  0 T  = T0 =  80º

By solving we get

 13.33        - 5.667           0            0

-5.667          13.33      - 5.667        0

     0           - 5.667       13.33     - 5.667

     0                 0         - 5.667      7.066

  *   

T2

T3

T4

T5

   =    

40 + 5.667*80

40

40

28



































































  C;. = T 0

2 9553  C;. = T 0

3 8839

 C; . = T 0

4 8232   C;. = T 0

5 2930
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Boundary condition: Free end insulated
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h   = 10 W/cm2 oC

K  = 70 W /cm  oC

T0 = 140oC

T∞ = 40oC

ℓ   = 5 cm

Radius   r     = 1 cm

Area A         = π r2 =  π cm2

Perimeter p =  2πr = 2 π



1
1

LECTURE 5



2

We have seen so far the application of 

the two noded linear element to the 

following applications

 Structural problems

 ID heat transfer through fins
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Structural problems

The governing equation is

in 0  <  x  <  l

With  B.Cs i) u(0)  =  0  

and

ii)At x=l P   ] 
dx

du
 [EA(x) 

0  =  A(x) +  ] 
dx

du
 [EA(x) 

dx

d
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Weak form is given by

 w(0)P(0) - P(L)w(L) dx   w(x)A(x)   =dx   
dx

dw
 

dx

du
 )(

L

00

 xEA

L

[ ]Ke









1               1-

1-             1 
           

2

A + A
 21

l

E
= 

=  er
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For a bar of constant cross section A1= A2

[ ]Ke










1               1-

1-             1 
     

l

EA

= 









1

1

2

Al er
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ID heat transfer through fins

0)( 







 TThp

dx

dT
KA

dx

d

  dxxTxhpwdx
dx

dw

dx

dT
KA

ll

00

)()(

 )()()(
0

  TThAxwdxTxhpw L

l
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The element matrices are


























hA          

         
  +  

        

        
 

hp l
  +  

          -

       - 
 

l

kA
] = [K e

0

00

21

12

611

11





















hA T
    +  

hpl T
]   =  [f e

0

1

1

2
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LONGITUDINAL VIBRATION

What is vibration?

What is natural frequency?

What is meant by degree of freedom of a 

vibrating body?

What is free vibration?

What is forced vibration?
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Free undamped vibration
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Free damped vibration



14
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A(x) – (+d) A(x) + I.F. = 0 --- (1)

ie., dA(x) – IF = 0

We know that IF is given by product of mass 

and acceleration.

Acceleration = d2u

d t2 

Longitudinal Vibrations of Elastic Rod:
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IF =m x a= (.A(x)dx) d2u/ dt2

=A(x) dx.ü

Substituting in equation (1) we get

dA(x) – A(x) dx. ü = 0

or 

dA(x) - A(x) ü = 0

dx
Now   ε = E  du/dx        
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d EA(x) du  - A(x) ü = 0 ---  (2)

dx           dx

Assume that the displacement u is given by a 

harmonic function namely

u = U sin nt

Velocity = ú  = du = U n cos nt

dt

Acceleration ü = d2u = - U n
2 sin nt

dt2   

= - u n
2

(3)
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d(E A(x) du )  + .A.u n
2 = 0         (4) 

dx           dx

For a bar fixed at one end the Boundary 

conditions are

i) u(0)  = 0

ii)EA(x) du at x=l = 0

dx
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0)(
2









nuxA

dx

du
EA

dx

d


0)())((
2









 dxxvuxA

dx

du
EA

dx

d
n
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  v(x) dxx A(x)u    dx 
dx

dv
 

dx

du
EA(x) n

ll
2

00

)(  

000  )) v(- P( P(l)v(l)  

P(l) = 0 and v(0) =0  Weak form becomes

0)(
2

00

    v(x) dxx A(x)u    dx 
dx

dv
 

dx

du
EA(x) n

ll


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0)(
2

00

    v(x) dxx A(x)u    dx 
dx

dv
 

dx

du
EA(x) n

ll



Substituting in the weak form 

u(x) = N1u1 +N2u2

And  v(x) as N1 first and then N2 we get a 

system of two equations in two unknowns 

namely u1 and u2 which can be written as
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0    
2

12

n
2221

1211

2

1

2221

1211















































u

u

MM

MM

u

u

KK

KK



 dx
dx

dN
 

dx

dN
 EA(x)    =   K

ji

l

e

ij 
0

dxN NxA    =   M ji

l

e

ij 
0

)(
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        -

       - 
 

l

EA
] = [K e










11

11

  
        

        
 

A l
] =   [M e










21

12

6



0    
2

12

n
2221

1211

2221

1211























































u

u

MM

MM

KK

KK


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0    
2

12

n
2221

1211

2221

1211























































u

u

MM

MM

KK

KK



Here ωn represents the natural frequency or

eigen value and the vector of unknown

displacements represents the eigen vector

associated with each eigen value
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0    
2

12

n
2221

1211

2221

1211























































u

u

MM

MM

KK

KK



0
2

1










u

u

  0  MK
2

12

n 









u

u


0 MK
2

n  

Which gives a quadratic in λ, where λ= ωn
2

Solving for λ we get the eigen values

Since {u} which represents the vector of

nodal displacements, is not zero
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0    
2

12

n
2221

1211

2221

1211























































u

u

MM

MM

KK

KK



Substituting ωn
2 in the above eqn we get 

the vector of unknown displacements   
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Example - 1 Longitudinal Vibrations of Elastic 
Road

Consider a bar of cross –

sectional area A and length

`ℓ’ fixed at one end and

subjected to longitudinal

vibration. We can model

the bar using one two

noded linear element.
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Governing equation is

The stiffness & mass matrices are 

respectively given by

[K] = EA   1-1               [M] = PAℓ 2   1

ℓ -1 1                          6    1   2

0
2









ρAu - ω

dx

dU
EA 

dx

d
n
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The equilibrium equation is given by

[K] – {M] n
2 u1 = 0

u2

i.e EA    1-1       Aℓ  2   1  2
n u1 = 0

ℓ     -1 1    - 6   1   2           u2

or

1-1    - ℓ2 2   1  2
n u1 = 0

-1 1         6E  1   2              u2
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As u1 = 0 the above equation reduces to

1-1      - ℓ2 2   1 2
n u1 = 0

-1 1         6E    1   2            u2

As u2 ≠ 0   1 –  ℓ2 2
n = 0

3E

or

n =√3       E

ℓ        ρ
 

E
 

l
 = 



732.1
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Example 2: Now we shall see the effect of a 

concentrated mass “M” at the end of the bar

[K] = EA     1 –1

ℓ     -1  1

[M] = Aℓ  2   1  +    0  0

6    1   2         0  M

[M] = Aℓ  2       1    

6    1   2 + M x 6

Aℓ
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Applying the Boundary condition that u1 = 0 

we get

1 – Aℓ2 2
n - Aℓ x  6M    2

n = 0

3E             6       Aℓ

or

2
n Aℓ2 + M      = 1

3E

1

n = 

Aℓ 2 + M

3E
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Example 3: Consider the same bar fixed at one 

end and subjected to longitudinal vibration. 

Divide the bar into two elements of length l
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[K]1 =  [K]2 =    

[M]1 =  [M]2 =                

2EA

L
          

 1       -1

-1         1











 AL

12

2           1

1           2











Elemental matrices are given by
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Global matrices are

[K] =

[M] =                                          {u}  =

The equation is [K]  {u}   - α[M]   {u}=0

















 1          1-        0 

1-         2         1-

0          1-       1  

    
   L

2EA
    

















2          1        0

1           4        1

0           1        2

    
12

AL

















3

2

1

u

u

u
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The boundary condition is u1=0   The reduced 
equation is

when  

The natural frequencies are  =              and

=   

0    =   
)2-   (1      )  - (-1

) - (-1      )4 - (2 





2
2

24
nω

E

ρ
 

L
α = 

 2 

E

L

88.3



E

L

33.21
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Example 4:- Determine the natural

frequencies of longitudinal vibration of the

unconstrained stepped bar shown in Fig.
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The Stiffness & mass matrices of the two 

elements are given by

[K]1 = A1E1 1   -1    = 4AE   1  -1

ℓ1 -1    1          l -1   1

[K]2 = A2E2 1   -1    = 2AE   1  -1

ℓ2 -1    1          l -1   1
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[M]1 = A1ℓ1 2   1    = Al 2   1

6      1    2         6      1   2

[M]2= A2ℓ2 2   1    = Al 2   1

6     1    2        12   1   2

The assembled stiffness & mass matrices are 

given by

2   -2    0

[K]g = 2AE   -2    3   -1

l 0   -1    1
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4     2    0

[M]g =     Al 2     6    1

12     0     1    2

The bar is unconstrained So the boundary

conditions involve only specification of forces at

the ends of the bar i.e.

EA du

dx    = 0 at x = 0 & x = l

The frequency equation can now be written as

2    -2    0                     4     2    0  

2AE     -2    3    -1   - 2
n Al 2     6    1    = 0

l 0   -1     1               12   0     1    2
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Dividing throughout by 2AE  & defining l2 2
n as λ

l 24E

We get

2 (1 – 2λ)     -2 (1 +λ)             0        

-2  (1 +λ)       3 (1 – 2λ)     - (1 +λ)    = 0

0           - (1 + λ)        (1 – 2λ) 

The evaluation of the determinant yields

18 λ (1 – 2λ) (λ- 2) = 0
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The roots of the above equation gives the 

natural frequencies of the bar as

λ = 0   or n = 0 [ Rigid Body Displacement]

λ = ½  or n = 3.46     E [ First Natural Frequency] 

1 l 

λ = 2  or  n = 6.92     E    [Second Natural Frequency] 

2 l 
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The first frequency n = 0, corresponds to

the condition where all parts of the bar are

subjected to equal displacements and

hence it is unstressed. It represents rigid

body mode shape for which the eigen

vector is given by 1

1

1
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The 2nd and 3rd frequencies correspond to

elastic deformation modes and to determine

the mode shape corresponding to these 2

frequencies we solve for the equations

[K – M2
n] {u} = 0

after substituting for n as  n  or  n
1             2       
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For n = n , we get
1 

1

{u} =       0

-1

The mode shape is given by
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For n = n we get
2

1

{u} =      -1

1

The mode shape is given by
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LAGRANGIAN INTERPOLATION FUNCTIONS

The Lagrange interpolation polynomials

associated with node `ί’ of an nth order element

is given by,

(x– x1) (x–x2) ….(x–xi-1 ) (x–x ί+1) …. (x–xn)

Lί (x) = 

(xi–x1) (xi–x2) …. (xi–x i-1) (xi –xi+1 ) … (xi–xn)

n (x–xi)

or   Lk (x ) = Π (xk–xi )
ί = 1                

ί ≠  k
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It is seen that L k (x) is an nth degree polynomial

given by the product of n linear factors. It can

also be seen that if x = xk, the numerator

becomes equal to the denominator and Lk(x) will

have a value unity.

On the other hand, if x = xi and ί ≠ k the

numerator & hence Lk (x) will become Zero,

ie., Lk(xj) = 1 if ί = k

0      if ί ≠ k

Where x j denotes the x co-ordinate of the ith

node in the element.
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Linear Element:

We shall derive the shape functions for a two

noded linear element using Lagrangian

polynomials.

1                           2

x 1=0                          x2 = ℓ

ℓ
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x–x2

L1 (x) =     x1–x2

Substituting x1 = 0 & x2 = ℓ  we get

L1 (x) =  x–ℓ        = 1– x

0 –ℓ               ℓ

L2(x) = x–x1 = x

x2–x1 ℓ

which are the same as that obtained by

inverting the generalized co-efficient matrix.
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Quadratic Element:

L1(x) =  (x–x2)(x–x3)         = (x – ℓ/2)  (x-ℓ)

(x1–x2) (x1–x3)            (– ℓ/2)   (–ℓ)

= x2–xℓ — xℓ/2 +ℓ2/2

ℓ2/2

= 2x2 – 3x  + 1

l2 l
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(x–x1)(x–x3)          (x–0) (x–ℓ)           

L2(x) = (x2–x1) (x2–x3) =   (ℓ/2–0) (ℓ/2–ℓ)

=  4x  - 4x2

l       l2

(x–x1)(x–x2)              (x–0)(x–ℓ/2)

L3(x) =                               = 

(x3–x1)(x3–x2)             (ℓ–0) (ℓ–ℓ/2)

=      2x2 - x

l2 l
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where     N1(x)   = 2x2 – 3x  + 1

l2 l

N2(x)   = 4x  - 4x2

l         l2

N3(x)   = 2x2 - x

l2 l
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Cubic Element:

(x–x2) (x–x3) (x–x4)     

L1(x) = 

(x1–x2) (x1–x3) (x1–x4)

=    (1–3x/ℓ) (1–3x/2ℓ) (1–x/ℓ) 
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(x–x1) (x–x3) (x–x4) 

L2(x) = 

(x2–x1) (x2–x3) (x2–x4)  

=    9x/ℓ  (1–3x/2ℓ) (1–x/ℓ)

(x–x1) (x–x2) (x–x4)         

L3(x) = 

(x3–x1) (x3–x2) (x3–x4)

=  - 9/2  x/ℓ   (1–3x/ℓ) (1–x/ℓ)  
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(x–x1) (x–x2) (x–x3)

L4(x) =            

(x4–x1) (x4–x2) (x4–x3)  

=    x/ℓ   (1–3x/ℓ) (1–3x/2ℓ)

Thus the Lagrangian Polynomials

provide us with a quick and easy method of

deriving the Shape Functions. It will later be

used to derive the shape functions for ID and

2D rectangular elements using Natural Co-

ordinates.
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N1(x)  =     (1–3x/ℓ) (1–3x/2ℓ) (1–x/ℓ)

N2(x)  =     9x/ℓ   (1–3x/2ℓ) (1–x/ℓ) 

N3(x)  =   - 9/2  x/ℓ   (1–3x/ℓ) (1–x/ℓ)

N4(x)   =     x/ℓ   (1–3x/ℓ) (1–3x/2ℓ)
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0  =  A(x) +  ] 
dx

du
 [EA(x) 

dx

d

0)( 







 TThp

dx

dT
KA

dx

d

0)(
2









nuxA

dx

du
EA

dx

d

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BEAM ELEMENTS



60



61
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Beam in Bending-Continued

• Considering the equilibrium of vertical forces and 
moments, we have the governing equation:

2

2

2

2

2 2

2 2

( ) 0

; ( ) 0

( ) 0

dQ
q x

dx

dM d M
Q q x

dx dx

d w
M EI and finally

dx

d d w
EI q x

dx dx

 

  

 

 
  

 
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Governing Differential Equation 

ed loading distribut  q is theq(x);     
dx

w(x)d
EI 

4

4

Shearforce  
dx

wd
EIQ

Moment  
dx

wd
   EIM

Slope  
dx

dw
θ

ent  displacemtransverse w   









3

3

2

2

Boundary conditions could involve

specification of any of the following variables
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Shearforce  
dx

wd
EIQ

Moment  
dx

wd
   EIM

Slope  
dx

dw
θ

ent  displacemtransverse w   

onditions Boundary c









3

3

2

2

Primary 

variables

Secondary

variables
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Possible loads

Distributed load (uniform or non-uniform),

Transverse loads, Transverse moments or

combination loading in transverse direction
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Shape functions for beam element

Sign conventions
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At x=0 w=w1 and θ= θ1

At x=l w=w2 and θ= θ2

2
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N1 & N2 associated with displacement

N2 & N4 associated with slopes
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Ritz Weak Formulation 

0)()(
)(
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l l
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Now u =        , and du =

dv =             , and v =  

dx

dv
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Strain Energy    = Work Done by UDL + Work 

done by moment + Work done by shear force 

)0()0()()()0()0()()(

)()( 

l

00

2

2

2

2

wQlwlQMllM

dxxvxqdx
dx

vd

dx

wd
EI

l



 





1
1

LECTURE 6



2

BEAM ELEMENTS



3



4



5

• Considering the equilibrium of vertical forces
and moments, we have the governing
equation:
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Governing Differential Equation 

loadingstributed  is the dix  qq(x);     
dx

w(x)d
EI )(
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Boundary conditions could involve

specification of any of the following variables
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Shearforce  
dx
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Possible loads

Distributed load (uniform or non-uniform),

Transverse loads, Transverse moments or

combination loading in transverse direction
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Shape functions for beam element

Sign conventions
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At x=0 w=w1 and θ= θ1

At x=l w=w2 and θ= θ2
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N1 & N3 associated with displacements

N2 & N4 associated with slopes
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Ritz Weak Formulation 
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3

3









  dxxvxqdx

dx

dv

dx

wd
EI

dx

wd
EIxv

l
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Now u =        , and du =

dv =             , and v =  

dx

dv
2

2

dx

vd

3

3

dx

wd
EI

2

2

dx

wd
EI

0 )()()(
2

2

2

2

0

2
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0

3
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
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
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dx
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dx

wd
EIxv
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EI

dx

dv
dxxvxqdx

dx

vd

dx

wd
EI

0

3

3

0

2

2l
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2

2

2

2

)()()( 
















 

Rearranging, 
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lll
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
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Slope Moment

Displacement

Shear force
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Strain Energy    = Work Done by UDL +

Work done by moment +

Work done by shear force 

 
l

00

2

2

2

2

)()( dxxvxqdx
dx

vd

dx

wd
EI

l

)0()0()()()0()0()()( wQlwlQMllM  
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From the quadratic functional we see that

specification of w and dw/dx= θ constitutes

the essential boundary conditions.

Specification of Q and M constitutes the

natural boundary conditions

Since a quadratic functional exists

minimizing it will lead to the equilibrium

equations in either the direct form or in the

variational (weak) form
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Substituting for w(x) and v(x) as

given below



Substituting for the displacement in the weak
form of the equation, and taking the weighting
functions as the shape functions, we get a
system of 4 equations in 4 unknowns.

    fuK 
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Stiffness Matrix for beam element
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Hence the element stiffness and load vector

for the beam element are given by
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Beam Element

• For a classical beam element,

1
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Example 1: Cantilever Beam subjected to 

point load at the tip

Boundary conditions for this beam are

At   x = 0   w1 = 0  and θ 1 = 0

At   x = ℓ   EI d3w = P and EI d2w = M = 0

dx3 dx2
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The Equilibrium Equation  is given by 
EI      12     6L   – 12        6L       w1 R
L3 6L    4L2 – 6L       2L2          θ 1 =  M     

-12  - 6L      12     – 6L       w2 -P
6L    2L2 - 6L     4L2           θ 2 O

Imposing the essential Boundary conditions we 

can strike off columns 1 & 2 & Rows 1 & 2 

which leaves us with

EI   12     -6L      w2  =   -P

- 6L     4L2         θ 2 O
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Which gives the equations.

12 EI w2 - 6EI   θ 2 = -P

L3 L2

- 6EI  w2 + 4EI   θ 2 = 0

L2 L

Solving for   θ 2 & w2 we get

θ 2 =  PL2

2EI

and w2 = PL3 

3EI
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Example 2: Simply supported beam with

uniformly distributed load

The above beam can be idealized by using one

element. The entire beam need not be

modeled. Instead, taking advantage of
symmetry we can model one half of the beam
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The boundary conditions in this case are

At   x = 0   w1 = 0 and EI   d2w   = 0

dx2

At   x = ℓ    θ 2   = 0 and EI d2w     = 0

dx2

The stiffness matrix is given by
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Where R is the reaction at left end and M is the

moment at mid section.

The reduced stiffness matrix after imposing

Boundary conditions are given by
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
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4EIθ1 — 6EI w2 =  fℓ2

ℓ               ℓ2 12

- 6EI θ1 + 12EI w2 =   fℓ

ℓ2 ℓ3 2

8EIθ1 - 12EI w2 =  fℓ

ℓ2 ℓ3 6
3

1
3EI

fl


4

1
24

5

EI

fl
w 
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Substitute ℓ = L/2

We get

3

1
24EI

fl


4

1
384

5

EI

fL
w 
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Example 3: Fixed – Fixed beam with central 

load

The above beam can be modeled taking 

advantage of symmetry as a single element

Boundary conditions: at x = 0, w1 =0 & θ 1 = 0

At x = ℓ, θ 2 =0 and   EI d3w  = - P   

dx3 2
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Deleting 1st , 2nd and 4th rows and columns of 

the stiffness matrix the equilibrium equation 

is given by

12 EI w2 =  - P

ℓ3 2

or w2 =  -P       ℓ3

2      12 EI

=   Pℓ3 (down wards)

24 EI     

Substituting ℓ = L/2   we get

w2 =   PL3

192 EI
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EXAMPLE 4: The beam shown in fig is fixed at

both ends and supported between the ends

with a simple support that allows rotation.

Compute the rotation and reaction at the

supports. Also determine the moments and

shear forces.



The given beam can be discretized into

two elements as shown below

The stiffness matrix & equations are

given by
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Element 1

12     6L   – 12      6L        w1 1           

EI            6L    4L2 – 6L     2L2    θ1 =  f ℓ    L/6      

ℓ3 -12  - 6L      12   – 6L        W2 2     1         

6L    2L2 - 6L   4L2          θ2 -L/6       

Element 2

12          6(2L)      – 12         6(2L)      w2 0 

EI     6(2L)    4(2L)2 – 6(2L)       2(2L)2        θ 2 =  0

[2ℓ]3 -12        - 6(2L)      12       – 6(2L)       w3 0

6(2L)     2(2L)2 - 6(2L)     4(2L)2          θ 3 0
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The global stiffness matrix is a (6 x 6) matrix.

Boundary conditions are

w1 = w2 = w3 = θ 1 = θ 3 = 0

The global equations now reduces to one

equation and one unknown, θ 2 [Remove 1st,

2nd, 3rd, 5th, & 6th rows & columns].

EI  (4L2 + 2L2) θ 2 = fL2

L3 12

or

θ 2  =    fL3

72 EI
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Now to compute reactions and moments for 

each span we utilize the local stiffness matrix 

for that span. Let the reactions and moments 

for the span 1-2 be R1, M1, R2 and M2.

12     6L   -12      6L        0                 1           R1

EI      6L    4L2 -6L     2L2    0       = f ℓ   L/6    +   M1

L3 -12  -6L     12    -6L         0            2    1           R2

6L    2L2 - 6L   4L2          fL3      -L/6          M2

72 EI
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Solving we get

R1 = 7fL ; M1 = fL2 ; R1
2 = 5fL ; M2 = - WL2

12            9              12                36

R2 represents the reaction at node 2 which is

the sum of shear forces at 2nd node of element

(1) and that at the 1st node of element (2).

Thus R2 = R1
2 + R2

2.

The stiffness matrix for element (2) can be

used to compute R2
2, M2, R3 and M3.
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12    12L   -12    12L        0                  R2
2

EI     12L  16L2 -12L   8L2    fL3 M2

8L3 -12  -12L    12   -12L      72 EI    =       R3

12L   8L2 - 2L   16L2          0                M3

0

Solving we get R2
2 = fL    R3 = -fL

48            48 

M2 = fL2 M3 = fL2

36            72

R2 = R1
2 + R2

2
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VIBRATION OF BEAMS

The 2 Noded Beam element can be used to

determine the natural frequency of transverse

vibration. The governing equations for

transverse vibration of a beam is given by

EI d4w  - ρ d2w = 0                          (1)

dx4 dt2

This can be converted to a different form by 

considering 

w = W sin nt                    dw=Wncos nt

 d2w = -n
2 Wsin nt dt

dt2   = -n
2 w
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EI d4w + wn
2 = 0

dx4

The weak form of this eqn. is given by
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Substituting for w(x) and v(x) as given below
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The elemental matrixes are given by

12     6L    -12L    6L   

Stiffness Matrix [K] = EI   6L    4L2 - 6L     2L2   

ℓ3 -12  - 6L      12   - 6L            

6L    2L2 - 6L   4L2    

156  22L  54   - 13L

Mass Matrix [M] = AL   22L   4L2 -13L -3L2

420    54   13L  156  -22L

-13L  -3L2  -22L  4L2
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The Eigen Value problem is given by

[K] {w} – [M] n
2 {w} = 0

or [K] – [M] n
2 {w} = 0

Here {w} gives the eigen vector or the vector that

defines the mode shape corresponding to each

eigen value n (Natural frequency).

Since w ≠ 0 [K] – [M] n
2 = 0

This equation can be solved for natural

frequencies.
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Example 1

Natural Frequency of a fixed – fixed Beam

Boundary conditions are w1 = θ1 = θ2 = 0. 

Therefore the eigen value equation reduces 

to the following.
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0
420

156
12

2

3
 n

ρA

l

EI




Dividing throughout by 12EI/ℓ3and solving for

n we get




A

EI

l
n 2

68.5


Substitute L = ℓ/2




A

EI

L
n 2

735.22

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Note:-

In such vibration problems if we require first

two natural frequencies then we shall have to

discretize the beam into two elements, which

will give 2 positive roots.

 The lower frequency represents the first

(fundamental) natural frequency and the higher

the second natural frequency.

 Substituting the natural frequencies we can

obtain the nodal displacements which

represents the mode shape.
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Example 2: Natural frequency of cantilever 

Beam

Boundary conditions for this beam are

At x = 0 w1 = 0 and θ 1 = 0

At x = ℓ EI d3w = 0 and EI d2w = M = 0

dx3 dx2
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Dividing throughout by EI/l3 and putting 


EI

ρA

420

4



(12 – 156) (4L2 – 4L2) – (22ℓ – 6L)2 = 0

Dividing throughout 4L2

(12 – 156) (1 -) – (11 – 3)2 = 0

352 – 102 + 3= 0

Solving for the roots of the above equation we

get when 1 = 0.03 and 2 = 2.88
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when 1 = 0.03

When 2 =2 .88




A

EI

l
n 2

55.3





A

EI

l
n 2

78.34




Mode Shapes for Cantilever

beam
First mode shape

Second mode shape

Third mode shape
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Natural frequency of vibration of a simply 

supported beam:

(2) Boundary Condition : w1 = 0   & θ2 = 0
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Equilibrium Equation is

EI     4ℓ2 2ℓ2 - Aℓωn
2 4ℓ2 -3ℓ2

ℓ3 2ℓ2 4ℓ2 420        -3ℓ2 4ℓ2 = 0
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Solving the above we get




A

EI

l
n 22

12.50





A

EI

l
n 2

94.10
1

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TWO DIMENSIONAL ELEMENTS

LECTURE 7



22

Physical problems can be classified 

into

(i)   I dimensional 

(ii)   II dimensional 

(iii) III dimensional problems. 

DIMENSIONALITY
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AreaVolume3D

CurvesArea2D

PointsLine1D

BoundaryGeometryDomain
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When the geometry, material

properties and field variables such as

displacement, temperature, pressure

etc can be described in terms of only

one spatial co-ordinate we can go in

for one-dimensional modeling

I-D PROBLEMS:-

T
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When the geometry and other

parameters are described in terms of two

independent co-ordinates we go in for

two-dimensional modeling.

2D PROBLEMS:-

T

T
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I D elements



Two dimensional domain discretised using

triangular elements



2D problems are described by partial 

differential equations over geometrically 

complex regions. 

The boundary of a two dimensional 

domain is in general a curve i.e. the field 

variable varies with respect to x & y axes.

Therefore the finite elements are simple 

2D geometric shapes that can be used to 

approximate a given 2D domain as well as 

the solution over it.



Consequently in the Finite Element 

Analysis of 2D problems we have two 

approximation errors.

Approximation errors due to 

approximation of solution over the 

element.

Discretisation errors due to the 

approximation of the domain into finite 

elements.



Constant strain 

triangular element

Bilinear Rectangular

element

Linear strain 

triangular element

Eight noded quadratic 

quadrilateral elements



1 2

3

4

Linear Quadrilateral element



General form of a 2 D second order 

equation is given as

a
x y x y x y

11 2 2
  +  a   +  a   +  a   -  a  f  +  f(x, y)  =   022

2

12

2

21

2

00

 



 



 

 

 

 



CASE I
The first application area is the

torsion of Non-Circular sections. The

governing differential equations is

where G is the shear modulus of the

material and  is the angle of twist. The

above Equation is obtained from equation

(2) by noting that.

0  =  2 +  
G

1
 +   

1
2

2

2

2










yxG

a11 =  a  =  1 / G,   a  =  0  and f =  222 00 
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1616Bauchau and Craig notes, August 2006
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http://www.ae.msstate.edu/%7Emasoud/Teaching/SA2/A6.5_more2.html
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http://www.ae.msstate.edu/%7Emasoud/Teaching/SA2/A6.5_more3.html
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2020





zx  =  

y





zy =  -  

x

The variable  is a stress function and the

shear stresses within the shaft are related to

the derivatives of  with respect to x and y.

and

On the free boundary   = 0.  This is the case 

of a Poisson’s Equation



CASE II

Several Fluid Mechanics 

Problems are embedded within equation 

(2).  The streamline and potential 

formulations for an ideal irrotational fluid 

are governed by

and

respectively

 



 



2

2 2x y
 +    =   0

2

 



 



2

2 2x y
  +     =   0

2
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The streamlines  are perpendicular to

the constant potential lines  , and the

velocity components are related to the

derivatives of either  or  with respect

to x and y.
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CASE III

The flow of water within the earth is

governed by equations in (2). The seepage of

water under a dam or retaining wall and with in

a confined acqufier is given by

Where Dx and Dy are the permeabilities of the 

earth material and  represents the piezometric 

head.  

D
x y

x   +  D   =  0
2

y

2 



 

2 2
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The water level around a well during the 

pumping process is governed by

where Q is a point sink term

D
x y

x  +  D   +  Q =  0
2

y

2 



 

2 2



CASE IV

There are two heat transfer

equations embedded with (2). The heat

transfer from a 2-D fin to the surrounding

fluid by convection is governed by

The coefficients Kx and Ky represent the

thermal conductive coefficient in the x

and y directions, respectively;

27

K
T

x

T

y
x   +  K   -  

2h

t
T -  

2h

t
 T  =  0

2

y

2





2 2




K
T

x

T

y
x   +  K    =   0

2

y

2





2 2

h is the convection coefficient; t is the

thickness of the fin; T is the ambient

temperature of the medium and T is the

temperature of the fin.

If the fin is assumed to be thin and the heat 

loss from the edges is neglected.  Then the 

equation becomes



CASE V
A fluid vibrating within a closed

volume is represented as

where P is the pressure excess above

the ambient pressure, w is the wave

frequency and c is the wave velocity in

the medium.









2

2 2

P

x

P

y
 +   +  

w

c
 P =  0

2 2

2



CASE VI
When is negative and  equals zero,

the differential equation is called a Helmholtz

equation. A negative yields an eigen value

problem. Physical problems of Helmholtz

equation is the wave motion for shallow bodies

of water and Acoustical Vibrations in closed

rooms

.

0
4

2

2

2

2

2

2

 w = 
g T

Π
 + 

y

w
 + h 

x

w
h 









a 00

a 00
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Where,

h is water depth at the quiescent state

w is the wave height above the quiescent level

g is the gravitational constant and

T is the period of oscillations



CASE VII
In the area of electrical engineering,

there are several interacting problems involving

scalar and vector fields. In an isotropic

dielectric medium with a permittivity  (F/m),

and a volume charge density  (C/m) the

electric potential u (V) must satisfy the

equation

0
2

2

2

2









 + ρ

y

w
 + 

x

u
ε 








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The magnetic field problem is represented by

where

u is the scalar magnetic potential (A) and

 is the permeability

0
2

2

2

2

  =  
y

u
 + 

x

u
μ








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Types of 2D Problems

VECTOR VARIABLE PROBLEMS

e.g. Torsion of non-circular shafts,   

Heat transfer through  fins

SCALAR VARIABLE PROBLEMS

e.g. Structural problems
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Shape functions for three noded linear

triangular element also called as

Constant strain triangular(CST) element

1,2,3 Node numbers

u1,u2,u3 Nodal value of field variable

(x1,y1), (x2,y2)(x3,y3) nodal coordinates
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Displacement model:
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The generalised coordinates are given in

terms of nodal displacements as

{ }a e   =   [P]  {u}-1 e

provided |P|  0 which is the area

bounded by the three vertices.
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Substituting for ais in the displacement model
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ji

j

 (x,y) uN


3

1

 y)x + γ + β (α
A

  (x,y)  = N iii

e

i
2

1

u(x,y)  =

where,

jkkji  y  -  x y     =   xα

kji  - y     =   yβ

)( kji   -  x x     =  γ 

and Here i, j, k permute in the natural order
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jkkji  y  -  x y     =   xα

kji  - y     =   yβ
jki   -  k     =   xγ

23321  y  -  x y     =   xα

31132  y  -  x y     =   xα

12213  y  -  x y     =   xα

321  - y     =   yβ

132  - y     =   yβ

213  - y     =   yβ

)( 321   -  x x     =  γ 

)( 132   -  x x     =  γ 

)( 213   -  x x     =  γ 
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Variation of Shape functions for CST element
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Applications of the CST Element:

·  Used in areas where the strain gradient is small.

·  Used in mesh transition areas (fine mesh to 

coarse mesh).

·  Use of CST in stress concentration or other 

crucial areas in the structure, such as edges of 

holes and corners is to be avoided

·  Recommended for quick and preliminary FE 

analysis of 2-D problems



Problem1:- Given the nodal values of

pressure in a triangular element as P1 = 40

N/cm2, P2 = 34 N/cm2 & P3 = 46 N/cm2

evaluate the element shape functions and

calculate the value of the pressure at a

point whose co-ordinates are given by

(2, 1.5). The co-ordinates of nodes 1, 2 & 3

are respectively (0,0), (4, 1.5), (2,5).



1 = x2y3 – x3y2 = 19

2 = x3y1 – x1y3 = 0

3 = x1y2 – x2y1 = 0

1 = y2 – y3 = - 4.5

2 = y3 – y1 = 5

3 = y1 – y2 = - 0.5 

1 = - (x2 – x3) = -2

2 = - (x3 – x1) = -2

3 = - (x1 – x2) = 4



1   0   0          1 x1 y1

2A  =   1   4  0.5   =    1 x2 y2 = 19 cm2

1   2   5           1 x3 y3

N1 = 1 (1 + 1x + 1y) = 1 (19 – 4.5x – 2y)

2A                           19

N2 = 1 (2 + 2x + 2y) = 1 (5x – 2y)

2A                          19

N3 = 1 (3 + 3x + 3y) = 1 (-0.5x + 4y)

2A                          19



Now P(x, y) = N1P1 + N2P2 + N3P3

= 1/19 [(19 – 4.5x – 2y) 40 + 

(5x – 2y) 34– (0.5x – 4y) 46]

P (2, 15) = 14.74 + 12.53 + 12.11 

= 39.37 N/cm2
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BI – LINEAR RECTANGULAR ELEMENT

Cartesian co-ordinates (generalized co-

ordinates)



51

Let the assumed displacement model be 

given by

u(x,y) = c0 + c1x + c2y + c3xy  ---- (1)

= < 1  x  y  xy >    c0

c1

c2

c3
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Let u1, u2, u3 & u4 represent the nodal values 

of the field variable at nodes 1, 2, 3 & 4. 

Substituting the respective x, y co-ordinates 

of the nodes we get

u1 = c 0

u2 = c 0 + 2a c 1

u3 = c 0 + 2a c 1 + 2b c 2 + 4ab c 3

u4 = c 0 + 2b c 2
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or

1   0     0     0        c0 u1

1  2a    0     0        c1 u2 ---- (2)

1  2a   2b   4ab     c2 =   u3

1   0    2b    0        c3 u4

Here ci represents the generalised co-ordinates 

which can be obtained by

c0 1   0    0     0   -1   u1

c1 =      1  2a   0     0          u2 -----(3)

c2 1  2a  2b  4ab        u3

c3 1   0   2b    0           u4
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Substituting (3) in (1) we get

u (x, y) = <1  x  y  xy>    1   0     0     0    -1 u1

1  2a    0     0       u2

1  2a   2b   4ab    u3

1   0    2b   0        u4

1 x 4                   4 x 4

(1 x 4)

u1

= < N1 N2 N3 N4 >          u2

u3

u4
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where

N1 =   1 – x       1 – y

2a          2b

N2 = x    1 – y      

2a       2b

N3 = x     y    = xy

2a  2b     4ab

N4 =   1 – x      y

2a   2b
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LAGRANGIAN INTERPOLATION 

POLYNOMIALS: (CARTESIAN CO-ORDINATES)
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n

It should be noted here that    Ni = 1 at any 

point in the element. i = 1

The variation of field variable over the element 

of bilinear element is given by

u(x, y) = N1u1 + N2u2 + N3u3 + N4u4

4

=    Niui

i = 1
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Determine three points on the 50°C contour 

line for the rectangular element shown the 

Fig. The nodal values are T1 = 42°C, T2 = 

54°C, T3 = 56°C, and T4 = 46°C.

Nodal Coordinates
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The length of the sides are

2b = X2 – X1 = 8 – 5 = 3

2a = Y4 – Y1 = 5 – 3 = 2

Substituting these values in the shape 

functions
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Inspection reveals that the 50°C contour line

intersects the sides 3-4 and 1-2; therefore, we

need to assume values of y and calculate

values of x. Along side 1-2, y=0 and

Substituting for T1 and T2 and solving gives

x=2.0. Along side 4-2, y= 2a =2 and

50
33

1),( 21 







 T

x
T

x
yxT

50
3

1
3

),( 34 







 T

y
T

x
yxT
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Substituting for T4 and T3 and solving gives x = 1.2

To obtain the third point, assume that y=a=1, then

Substituting the nodal values gives

Solving yields x= 1.64
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x



65

The xy coordinates of the three points are

(1.2,2), (1.64,1) and (2,0). The XY coordinates

of these points are (6.2,5), (6.64,4) and (7,3).

A straight line from (6.2,5) to (7,3) passes

through the point (6.60,4); therefore, the

contour line is not straight.
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Torsion of Non-circular shaft:

The governing equation for the torsion 

problem is given by

0  =  2 +  
G

1
 +   

1
2

2

2

2










yxG

Gθ   = - 
y

 +  
x

  2
2

2

2

2









y
 = τ zx





x
 = - τ zy





On the free boundary   = 0.
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To derive the weak form multiply the equation 

with a weighting function w(x,y)

0),(2),(
2

2

2

2









 dxdyyx wGθdxdy  yxw

y
 +  

x
  









0),()2(
2

2

2

2

 dxdyyxwGθ
y

 +  
x 









6868
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where nx and ny are the components 

(direction cosines) of the unit normal vector
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dxdyyx wGθdxdy
y

w

y
dxdy
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







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

Assuming a CST element and substituting Ф

as N1Ф1+ N2Ф2+ N3Ф3 and w(x,y) as N1, N2,

N3 we get a system of 3 equations in 3

unknowns which can be written as

As Ф is specified along the boundaries w(x,y)

= 0 and the boundary terms vanish. The weak

form becomes
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





 dxdy
y

N

y

N
dxdy

x

N

x

N
K

jiji

ij


02   dxdy NGθ f jj






















































3

2

1

3

2

1

333231

232221

131211

f

f

f

KKK

KKK

KKK









71







 dxdy
y

N

y

N
dxdy

x

N

x

N
K

jiji

ij








 dxdy
y

N

y

N
dxdy

x

N

x

N
K


1111

11

 y)x + γ + β (α
A

  (x,y)  = N iii

e

i
2

1



72

 1111

112112

11211211

4

1

4

1

4

1

4

1

4

1

















A

dxdy
A

dxdy
A

dxdy
A

dxdy
A

K

 2121

21221212

4

1

4

1

4

1







 

A

dxdy
A

dxdy
A

K



 3131

31231213

4

1

4

1

4

1







 

A

dxdy
A

dxdy
A

K

 2222

22222222

4

1

4

1

4

1







 

A

dxdy
A

dxdy
A

K

 3232

32232223

4

1

4

1

4

1







 

A

dxdy
A

dxdy
A

K



7474

 3333

33233233

4

1

4

1

4

1







 

A

dxdy
A

dxdy
A

K

A4

1























2

3

2

3

3232

2

2

2

1

31312121

2

1

2

1







[K] =



75

02   dxdy NGθ f jj

3
2

02 11

A
Gθ

dxdy NGθ f



 

3
2

02 22

A
Gθ

dxdy NGθ f



 



7676

3
2

02 33

A
Gθ

dxdy NGθ f



 


































1

1

1

3
2

3

2

1
A

Gθ

f

f

f



7777

2D linear elements

Linear triangular elements

Bi linear rectangular elements

Shape functions

Weak form for torsion problem

Simple problems



1

TWO DIMENSIONAL ELEMENTS

LECTURE 8



2

Types of 2D Problems

VECTOR VARIABLE PROBLEMS

e.g. Structural problems

SCALAR VARIABLE PROBLEMS

e.g. Torsion of non-circular shafts,

Heat transfer through fins



3

The first application area is the

torsion of Non-Circular sections. The

governing differential equation is

where G - shear modulus of the material

 - is the angle of twist.

0  =  2 +  
G
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1
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2



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http://www.ae.msstate.edu/%7Emasoud/Teaching/SA2/A6.5_more2.html
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http://www.ae.msstate.edu/%7Emasoud/Teaching/SA2/A6.5_more3.html
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Bauchau and Craig notes, August 2006
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Torsion of Non-circular shafts:

The governing equation for the torsion 
problem is given by

0  =  2 +  
G

1
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 = τ zx
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x
 = - τ zy
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On the free boundary   = 0.
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y
 = τ zx





x
 = - τ zy





Here  - is a stress function

The shear stresses within the shaft are related

to the derivatives of  with respect to x and y.

and

On the free boundary   = 0.  This is the case 

of a Poisson’s Equation
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To derive the weak form multiply the governing
equation with a weighting function w(x,y)
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where nx and ny are the components (direction 
cosines) of the unit normal vector
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Assuming a CST element and substituting Ф as
N1Ф1+ N2Ф2+ N3Ф3 and w(x,y) as N1, N2, N3 we
get a system of 3 equations in 3 unknowns which
can be written as

As Ф is specified along the boundaries w(x,y) = 0
and the boundary terms vanish. The weak form
becomes
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 
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A

dxdy
A
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 
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[K] =
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02   dxdy NGθ f jj

3
2

02 11

A
Gθ

dxdy NGθ f



 

3
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 
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
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Problem: Determine the stresses in a shaft of 

square cross section as shown in fig.

27902 Gθ
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Element

No.

i j k

1 1 2 4

2 2 3 5

3 5 4 2

4 4 5 6

Element Connectivity
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αi = xjyk-xkyj βi = yj-yk i=-(xj-xk)

0.0625 -0.25 0

0 0.125 -0.25

0 0 0.25

Area = 
32

1

4

1

4

1

2

1

2

1
 xxxbxht
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A4
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
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
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[K]1= 






















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00625.00625.0

= 8
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



















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=
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1 2 3 4 5 6

1 1 -1 0

2 -1 2 -1

3

4 0 -1 1

5

6

[K]1
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1 2 3 4 5 6

1 1 -1 0

2 -1 2+1 -1 -1 0

3 -1 2 -1

4 0 -1 1

5 0 -1 1

6

[K]2
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1 2 3 4 5 6

1 1 -1 0

2 -1 2+1+1 -1 -1-1 0+0

3 -1 2 -1

4 0 -1-1 1+2 -1

5 0+0 -1 -1 1+1

6

[K]3
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1 2 3 4 5 6

1 1 -1 0

2 -1 2+1

+1

-1 -1-

1

0+0

3 -1 2 -1

4 0 -1-1 1+

2+

1

-1-1 0

5 0+0 -1 -1-

1

1+1

+2

-1

6 0 -1 1

[K]4



32

2

1







































110000

142100

024020

010210

002141

000011

[k]=

Semi bandwith =( Max. diff. bet node nos +1)x DOF

= (3+1)x1=4

2G = 2790 N/mm2
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
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2

4
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1
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Solving we get

1 = 217.95

2 = 159.83

4 = 123.505

xz =      , yz = -

xz =       =      {N11 + N22 +N34 }

= { 11 + 22 +34 },  = 16 (-9.08125)

= -144 N/mm2

y



x



y


y


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xz = - = - {N11 + N22 +N34 }

= { β11 + β22 +β34 }

= -16 (-14.53)  = 232.48 N/mm2

For element 2

xz=     {12+23+35}

yz = - { β12 + β23 +β35 }

x



x



A2

1

A2

1
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For element 3

xz= {15+24+32}

yz = - { β15 + β24 +β32 }

For element 4

xz= {14+25+36}

yz = - { β14 + β25 +β36 }

=



39

 dAT 21

  dANNN )(2 432211 

A}.{
3

2
421  

432 &TTTSimilarly determine

Total Torque=   8*4321 TTTT 
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PROBLEM 2:
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Element i j k

1 1 2 3

2 5 4 3

3 1 3 5
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Q
y

T

x

T
k 

















2

2

2

2

Element i j k

1 1 2 3

2 5 4 3

3 1 3 5
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
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
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
















2

3

2

332323131

3232

2

2

2
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31312121

2

1

2

1

4
][







A

k
k e

Element 1 and 2                  Element 3 

β1 = -0.15  , 1 = 0,       β1 = 0.15  , 1 = 0, 

β2 = 0.15  , 2 = -0.4   β2 = 0.15  , 2 = -0.4

β3 = 0       , 3 = 0.4     β3 = 0       , 3 = 0.4

β1 = (-0.15) (-1) ,  β2 = 0.3 ,  β3 = - 0.15

1 = -0.4  ,  2 = 0 , 3 = 0.4
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Substitute for T5as 80º and 

evaluate T1, T2 ,T3and T4
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Variation of Shape functions for CST element



1

TWO DIMENSIONAL ELEMENTS- THERMAL PROBLEMS

LECTURE 9



2

Types of 2D Problems

VECTOR VARIABLE PROBLEMS

e.g. Structural problems

SCALAR VARIABLE PROBLEMS

e.g. Torsion of non-circular shafts,

Heat transfer through fins
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









Governing Equation for 2D Heat transfer

by conduction and convection

Weak form of the equation
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PROBLEM 1:
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Variation of Shape functions for CST element
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STIFFNESS MATRIX FOR BI LINEAR 

RECTANGULAR ELEMENT
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VECTOR VARIABLE PROBLEMS
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Three dimensional stresses
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Stresses on an elemental cuboid
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xx + xy + xz + Bx = 0

x y z

yx + yy + yz + By = 0

x y z

zx + zy + zz + Bz = 0

x y z

Force

Equilibrium 

Equations

Mx = 0 ,My = 0 & Mz = 0 yields

xy = yx ; yz = zy ; zx = xz (2)
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Strain – displacement relations:-

xx =  u

x

yy =  v

y

zz =   w

z                  

xy =  v +  u

x     y

yz = w + v

y     z

zx = w + u

x     z
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Stress – Strain Relations:-

xx = xx -  ( yy + zz)

E    E

yy = yy -  (xx + zz)

E     E

zz = zz -  (xx + yy)

E     E

xy = xy / G

yz = yz/ G

zx = zx/ G
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Where E = Young’s Modulus          

G = Shear Modulus   =      E

2 (1 + )

 = Poisson’s ratio 
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The equations (6) can be written in matrix form as

xx 1    - - 0          0           0           xx

yy - 1    - 0          0           0           yy

zz = 1    - - 1      0          0           0            zz 

xy E    0     0    0   2(1+)     0           0            xy

yz 0    0    0       0       2(1+)      0            yz

zx 0    0    0       0          0      2(1+)        xz

.      {} = [C]   {}

 {} = [C]-1 {}

= [D]   {} 

Here the matrix [D] is called the constitutive

matrix given by
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1-   0         0          0           

1-2 1-2 1-2

[D] =      E             1-  0         0          0        

1 +  1-2 1-2 1-2

  1- 0         0          0          

1-2 1-2 1-2

0       0          0         ½         0          0

0       0          0          0         ½         0

0       0          0          0          0         ½ 
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[D]
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{} = [D]   {}= DBd
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STRAIN DISPLACEMENT RELATIONS 

STRESS STRAIN RELATIONS 

{} = [D] {}= DBd

{}= Λu = B d

Where B = = ΛN
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2-D APPROXIMATIONS OF 3 – D 

PROBLEMS

There exists several problems in solid

mechanics that can be formulated as

three Dimensional problems and the

finite element technique can be used to

solve them.

However it may turn out to be costly and

time consuming to perform Finite

Element Analysis of 3 D problems.
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 In several practical situations the

geometry and loading may be such that

the problem can be reduced from 3 D to

2 D or from 2D to 1D.

The two dimensional idealizations in

stress analysis include

i. PLANE STRESS problems 

ii. PLANE STRAIN problems

iii. AXISYMMETRIC  problems
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PLANE STRESS: - A 3D problem can be

reduced to a plane stress condition if it is

characterized by very small dimensions in

one of the normal directions.

A thin plate with a cut out subjected to in-

plane loading.

Thin plate subjected to in-plane loading
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In these cases the stress components z, xz,

& yz are zero and it is assumed that no stress

component varies across the thickness. The

state of stress is then specified by x, y and

xy only, (functions of x & y) and is called

plane stress. The stress strain relations are

given by

x 1      0         x

y =    E           1        0         y

xy 1 – 2 0    0     1 –  xy

2
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PLANE STRAIN:- There exist problems

involving very long bodies i.e. a body

whose geometry and loading do not vary

significantly in the longitudinal direction.

Such problems are referred to as plane

strain problems.

Some typical examples include a long

cylinder such as a tunnel, culvert or buried

pipe, a laterally loaded retaining wall, a

long earth dam, and a loaded semi-infinite

half space such as a strip footing on a soil

mass.
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A long dam
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In all these problems, the dependant variable

can be assumed to be functions of only x & y

co-ordinates provided that we consider a

cross-section some distance away from the

two ends.

If we further assume that ‘w’ the displacement

component in the ‘z’ direction is zero at every

cross-section, then the non-zero strain

components will be

x = u   ; y = v  ; xy =     u  +  v

x            y                y      x

and the strain components
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z, xz, yz will vanish. The dependant stress

variables are x, y & xy and the constitutive

relation for an elastic isotropic material is given

by

x (1-)         0           x

y =           E                     (1-)          0            y

xy (1 + ) (1 – 2)      0           0       (1 – 2 ) xy

2

It is important to note here that only εz = 0 but z  0.

εz = z -  x   y  

E       E           E

z  - x  y
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AXISYMMETRIC PROBLEMS:- Many 

engineering problems involve solids of 

revolution (axisymmetric solids) subject to 

axially symmetric loading.

Examples are a circular cylinder loaded by 

uniform internal or external pressure or other 

axially symmetric loading as shown in 

and a semi – infinite half space loaded by a 

circular area. eg., a circular footing on a soil 

mass.
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Because of symmetry the stress components 

are independent of the angular co-ordinate ‘’ 

and hence all the derivatives with respect to ‘ ‘ 

vanish and the components , ,z, x , y

are zero. The strain displacement relation are 

given by

εr = u   ; ε = u  ; εz = w     rz  =  u  + w

x            r           z                 z      r

The constitutive relations is
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Now the strain energy stored in an element is given 

by

U = ½  v { ε }T { }dv 

= ½ v { ε }T [D] { ε }dv 

= ½ v [B]T {d} [D] [B] {d}dv   

The work done by nodal forces is given by

W = ½ v {F} {d}dv   

Equating for a conservative system we get

v ([B]T [D] [B])dv {d} = {F}

i.e. [K] {d} = {F}

where [K] = v[B]T [D] [B] dv
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Problem 2:- Assuming plane stress conditions evaluate

the stiffness matrix for the element shown in Fig.

Assume E= 2 x 105 N/cm2 and = 0.3. u1 = 0.000, v1

= 0.0025, u2 = 0.0012, v2 = 0.000, u3 = 0.0000 & v3 =

0.0025.
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1 = y2 – y3 = 0 – 1 = -1

2 = y3 – y1 = 1 + 1 =  2

3 = y1 – y2     = -1– 0 = -1 

1 = -(x2 – x3)  = 0 – 2 = -2

2 = -(x3 – x1)  = 0 – 0 =  0

3 = -(x1 – x2)  = 2 – 0 =  2
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.        A = ½ x b x h = ½ x 2 x 2 = 2

1 0   2 0   3 0         u1

{} = 1    0    1 0    2 0     3 v1

2A   1 1 2 2 3 3 u2         

v2

u3 

v3

= {B] {d}

-1   0   2   0  -1  0          

[B] = 1         0  -2   0   0   0   2         

2(2)      -2  -1   0   2   2  -1
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1    0

[D]  =   E           1     0

1 – 2 0   0   1 - 

2

1   0.3     0

=  2 x 105 0.3   1      0

1 – (0.3)2 0    0 1 – 0.3

2
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1

TWO DIMENSIONAL ELEMENTS- VECTOR VARIABLES

LECTURE 10



2

Types of 2D Problems

VECTOR VARIABLE PROBLEMS

e.g. Structural problems

SCALAR VARIABLE PROBLEMS

e.g. Torsion of non-circular shafts,

Heat transfer through fins
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Three dimensional stresses
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Stresses on an elemental cuboid
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Force

Equilibrium 

Equations

Mx = 0 ,My = 0 & Mz = 0 yields

xy = yx ; yz = zy ; zx = xz (2)
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Strain – displacement relations:-

xx =  u

x

yy =  v

y

zz =   w

z                  

xy =  v +  u

x     y

yz = w + v

y     z

zx = w + u

x     z
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Stress – Strain Relations:-

xx = xx -  ( yy + zz)

E    E

yy = yy -  (xx + zz)

E     E

zz = zz -  (xx + yy)

E     E

xy = xy / G

yz = yz/ G

zx = zx/ G

Where 

E = Young’s Modulus                     

G = Shear Modulus       E

2 (1 + )

 = Poisson’s ratio 
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The equations (6) can be written in matrix form as

xx 1    - - 0          0           0           xx

yy - 1    - 0          0           0           yy

zz = 1    - - 1      0          0           0            zz 

xy E    0     0    0   2(1+)     0           0            xy

yz 0    0    0       0       2(1+)      0            yz

zx 0    0    0       0          0      2(1+)        xz

.                {} = [C]   {}

 {} = [C]-1 {}

= [D]   {} 

Here the matrix [D] is called the constitutive

matrix given by
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1-   0         0          0           

1-2 1-2 1-2

[D] =      E             1-  0         0          0        

1 +  1-2 1-2 1-2

  1- 0         0          0          

1-2 1-2 1-2

0       0          0         ½         0          0

0       0          0          0         ½         0

0       0          0          0          0         ½ 
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[D]
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STRAIN DISPLACEMENT RELATIONS IN 2D
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{} = [D]   {}= DBd
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STRAIN DISPLACEMENT RELATIONS

STRESS STRAIN RELATIONS

{} = [D] {}= DBd

{}= Λu = B d

Where B = = ΛN
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Now the strain energy stored in an element is 

given by

BddvDdB

dvDdv

v

TT

v

T

v

T






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2

1

2

1

2

1
U 

DBdBd   &



23

The work done by nodal forces is given by

Equating strain energy to work done, for a

conservative system we get

dvFd
v

T


2

1
W

    

  BdvDBKwhere

FdKie
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2-D APPROXIMATIONS OF 3 – D 

PROBLEMS

There exists several problems in solid

mechanics that can be formulated as

three Dimensional problems and the

finite element technique can be used to

solve them.

However it may turn out to be costly and

time consuming to perform Finite

Element Analysis of 3 D problems.



27

 In several practical situations the

geometry and loading may be such that

the problem can be reduced from 3 D to

2 D or from 2D to 1D.

The two dimensional idealizations in

stress analysis include

i. PLANE STRESS problems 

ii. PLANE STRAIN problems

iii. AXISYMMETRIC  problems
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PLANE STRESS: - A 3D problem can be

reduced to a plane stress condition if it is

characterized by very small dimensions in

one of the normal directions.

Eg.

A thin plate with a cut out subjected to in-

plane loading.

Thin plate subjected to in-plane loading
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In these cases the stress components z,

xz, & yz are zero and it is assumed that

no stress component varies across the

thickness. The state of stress is then

specified by x, y and xy only, (functions

of x & y) and is called plane stress. The

stress strain relations are given by
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PLANE STRAIN:- There exist problems

involving very long bodies i.e. a body

whose geometry and loading do not vary

significantly in the longitudinal direction.

Such problems are referred to as plane

strain problems.

Some typical examples include a long

cylinder such as a tunnel, culvert or buried

pipe, a laterally loaded retaining wall, a

long earth dam, and a loaded semi-infinite

half space such as a strip footing on a soil

mass.
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A long dam
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In all these problems, the dependant variable

can be assumed to be functions of only x & y

co-ordinates provided that we consider a

cross-section some distance away from the

two ends.

If we further assume that ‘w’ the displacement

component in the ‘z’ direction is zero at every

cross-section, then the non-zero strain

components will be

x = u   ; y = v  ; xy =     u  +  v

x            y                y      x

and the strain components
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z, xz, yz will vanish. The dependant stress

variables are x, y & xy and the constitutive

relation for an elastic isotropic material is given

by

It is important to note here that only εz = 0 but 

z  0.

εz = z -  x   y  

E       E          E

z   x  y
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)1(2 
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Substituting z   x  y
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x (1-)         0           x

y =           E                     (1-)          0             y

xy (1 + ) (1 – 2)      0           0       (1 – 2 ) xy

2

This is the constitutive matrix for 

plane strain element
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AXISYMMETRIC PROBLEMS:- Many

engineering problems involve solids of

revolution (axisymmetric solids) subject to

axially symmetric loading.

Examples are a circular cylinder loaded by

uniform internal or external pressure or other

axially symmetric loading as shown in
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Because of symmetry the stress components 

are independent of the angular co-ordinate ‘’ 

and hence all the derivatives with respect to ‘ ‘ 

vanish and the components x , r are zero. 

The strain displacement relation are given by

εr = u   ; ε = u  ; εz = w   ;  rz  =  u  + w

x            r           z                 z      r
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The constitutive relation is
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Problem 2:- Assuming plane stress conditions

evaluate the stiffness matrix for the element

shown in Fig. Assume E= 2 x 105 N/cm2 and

=0.3. u1=0.000, v1=0.0025, u2=0.0012,

v2=0.000, u3 =0.0000 & v3= 0.0025.
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1 = y2 – y3 = 0 – 1 = -1

2 = y3 – y1 = 1 + 1 =  2

3 = y1 – y2    = -1– 0 = -1 

1 = -(x2 – x3)  = 0 – 2 = -2

2 = -(x3 – x1)  = 0 – 0 =  0

3 = -(x1 – x2)  = 2 – 0 =  2
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.        A = ½ x b x h = ½ x 2 x 2 = 2

1 0   2 0   3 0         u1

{} = 1    0    1 0    2 0     3 v1

2A   1 1 2 2 3 3 u2

v2

u3

v3

= {B] {d}

-1   0   2   0  -1  0          

[B] = 1         0  -2   0   0   0   2         

2(2)      -2  -1   0   2   2  -1
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1    0

[D]  =   E           1     0

1 – 2 0   0   1 - 

2

1   0.3     0

=  2 x 105 0.3   1      0

1 – (0.3)2 0    0 1 – 0.3

2
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F3x = F4x= (2*4)/2 = 4N
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NATURAL CO-ORDINATE SYSTEMS

A Natural Co-ordinate system is a local co-

ordinate system that permits the specification

of a point within an element by a set of

dimensionless numbers whose absolute

magnitude never exceeds unity
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i.e. A I Dimensional element described by

means of its two end vertices (x1 & x2) in

Cartesian space is represented or mapped

on to Natural co-ordinate space by the line

whose end vertices 1 & 2 are given by –1 &

+1 respectively.
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ADVANTAGES OF NATURAL 

CO-ORDINATE SYSTEMS

i) It is very convenient in constructing    

interpolation functions.

ii) Integration involving Natural co-ordinate 

can be easily performed as the limits of 

the Integration is always from –1 to +1. 

This is in contrast to global co-ordinates 

where the limits of Integration may vary 

with the length of the element.
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iii) The nodal values of the co-ordinates are

convenient number or fractions.

iv) It is possible to have elements with curved

sides.
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I D elements
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Constant strain triangular element Bilinear Rectangular element

Linear strain triangular element Eight noded quadratic quadrilateral elements 

II D elements
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1 2

3

4

Linear Quadrilateral element
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III D elements



57
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I - D Lagrangian  Interpolation 

functions in Natural Co-ordinates
Linear Element:

L1 =  (- 2)

(1 – 2)

Substituting 1 = -1 & 2= +1,  we get

L1 = (-1) = 1 -  = 1   (1 - )

-1 -1      2         2

L2 = (  - 1) =  (+1)   = 1  (1 +)

(2 – 1)     +1 +1     2

In general Lj = ½ (1 +j)
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3 Noded Quadratic Element

1= -1    2 = 0   3= 1

L1 = ( - 2)( - 3) =   ( - 0)( - 1)   =    /2 ( - 1)

(1 – 2)(1 – 3)  (-1 – 0)  (-1 -1)      

=  - /2 (1 -)

L2 = ( - 1)( - 3) = ( + 1)( - 1)     = (1 - ) (1 + )

(2 – 1) (2 – 3) (0 + 1)   (0 – 1)

L3 = ( - 1)( - 2) = ( + 1)( - 0)    =  /2 (1 + )

(3 – 1) (3 – 2) (1 + 1)  (1 - 0)  
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4 Noded Cubic Element:

1 = -1     2 = ⅓    3 = ⅓   4 = 1

L1 = (- 2)(- 3)( - 4)

(1 – 2)(1 –3)(1 – 4)

=  (+⅓)(-⅓)( - 1)  = - 9/16 (⅓+)(1 -  )(⅓ - )

(-1 +⅓)(-1 -⅓)(-1 –1) 

L2 = (- 3)(- 4)( - 1)

(2 – 1)(2 –3)(2 – 4)  

=  -27/16 (1+) (1 - ) (⅓- )  
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L3 =     (- 1)(1- 2)( - 4)

(3 – 1)(3 –2)(3 – 4)      

=  27/16 (1+)(1 -  )(⅓ + )

L4 =      (- 1)(- 2)( - 3)

(4 – 1)(4 –2)(4 – 3) 

=  -9/16 (⅓+)(⅓ -  )(1 + )   
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Lagrangian Interpolation polynomials for 

rectangular Element: (Natural Co-ordinates)
Bi-Linear rectangular Element:

N1 () =  - 2 =   -1 = 1 – 

1 –2 -1 –1      2

N1 (η) =  - 4 = - 1  = 1 - 

1 – 4 -1 –1       2

N1 (,) = N1 () N1 ()

=   1 -  1 - 

2          2

= 1/ 4(1 -  ) (1 –  )
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N2 (,) = ( - 1) ( - 3) 

(2 – 1) (2 – 3)

= ( + 1) ( -1) = ¼ (1 + ) (1 – )

(1 + 1) (-1 –1)   

N3 (,) = ( - 4) ( - 2)  

(3 – 4) (3 – 2) 

= ( + 1) ( +1)       = ¼ (1 + ) (1 + )

(1 + 1) (1 +1)
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N4 (,) = ( - 3) ( - 1)

(4 – 3) (4 – 1) 

= ( - 1) ( +1)

(-1 -1) (1 +1)

= ¼ (1 - ) (1 + )
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NINE NODED QUADRATIC 

QUADRILATERAL ELEMENT

We shall now proceed to derive the shape

functions for a nine noded quadratic

quadrilateral element using Lagrangian

polynomials, in natural co-ordinates.
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N1 () =    ( - 2)( - 3)

(1 – 2) (1 – 3)

=  ( - 0)( -1)    =   ( - 1)

(-1 - 0) (-1 –1)         2

N1 () =    ( - 4)( - 7)

(1 – 4) (1 – 7)

=  ( - 0)( -1)  = ( - 1)

(-1 - 0) (-1 –1)        2

N1(,) = N1 () N2() = ¼ (2-) (2-)
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N2(,) = ½ (1 - 2) (2-)

N3(,) = ¼ (2 + ) (2-)

N4(,) = ½ (2  - ) (1 - 2)

N5(,) =  (1 - 2 ) (1 - 2)

N6(,) = ½ (2 + ) (1 - 2)

N7(,) = ¼ (2 - ) (2 + )

N8(,) = ½  (1 - 2) (2 + )

N9(,) = ¼ (2 + ) (2 + )
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Shape functions for Eight noded quadrilateral 

element :

The equations to the various lines connecting 

the various nodes is given by
Line 1 – 2 – 3      1 +  = 0

Line 6 – 7 – 8      1 -  = 0

Line 1 – 4 – 6      1 +  = 0

Line 3 – 5 – 8      1 -  = 0

Line 2 – 5            1 -  + = 0

Line 4 – 7            1 +  - = 0

Line 7 – 5            1 -  -  = 0

Line 4 – 2            1 +  +  = 0
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To obtain the shape function N1 , we identify

the equation to those lines not passing

through node 1 and express N1 as a product

of these line equations.

i.e. lines 6 – 7 – 8, 3 – 5 – 8 and 4 – 2

N1 = C(1 - ) (1 - ) (1 +  + )

N1 (-1, –1) = C(1 + 1) (1 + 1) (1 – 1 –1) = 1

C = - 1/4

 N1(,) = - ¼ (1 - )(1 -  ) (1 +  + )
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Similarly for N2 the lines are 6 – 7 – 8 , 1 – 4 –

6 and 3 – 5 – 8

N2 = C(1 - ) (1 + ) (1 - )

= C(1 - ) (1 - 2)

N2 (0, -1) = C(1 – 0) (1 + 1) = 1    

C = ½

N2 (,) = ½ (1 – 2)(1 - )

N3 (,)  = ¼ (1 + ) (1 - ) (-1 +  -)
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N4(,)  = ½ (1 - ) (1 - 2)

N5 (,)  = ½  (1 + ) (1 - 2)

N6 (,)  = ¼  (1 - ) (1 + ) (-1 -  + )

N7 (,)  = ½  (1 - 2) (1 + )

N8 (,)  = ¼ (1 + ) (1 + ) (-1 +  + )
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ISOPARAMETRIC  ELEMENTS

r

x =       xi Li ()
i = 1

For a linear transformation r = 2

x = x1 L1 () + x2 L2 ()

= x1 (1- ) + x2 (1 + )

2                2
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For example an element whose x co-ordinates 

are given by x1 = 3 & x2 = 7

Then x1 = x1 (1 -  ) + x2 (1 + )

2               2

3 =    3 (1 - ) + 7 (1 + )

2               2

or  6 = 3 – 3 + 7 + 7

or 4 = -4 

or = -1

ie the point xi = 3 transforms to  = -1 in natural 

co-ordinate space
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similarly x2 = x1 (1 - )   + x2 (1 +)

2 2

7 =   3 (1 - )   +  7 (1 + )

2 2 

14 = 3  - 3 + 7 + 7

4 = 4  or       = 1

The point  x2 = 7 in Cartesian space gets 

transformed to 2 = +1 in Natural co-ordinate 

space.  So the transformation 

r

X  =  i i () transforms the geometry

i = 1. 
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Similarly we have the approximation of the 

field variable in terms of shape functions 

expressed as           s

u =    ui Ni ()

i = 1
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Jacobian of Transformation
Among the 3 cases given above Isoparametric

are more commonly used due to their

advantages which include the following:

i) Quadrilateral elements in (x,y) coordinates

with curved boundaries get transformed to a

rectangle of (2 x 2) units in (, ) co-ordinates

ii) Numerical integration is more easily

performed as limits of integration vary from –1

to +1 for all elements.
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We have seen that determination of the stiffness

matrix requires the computation of derivative of

shape functions with respect to ‘x’. However as the

shape functions (Interpolation function) are

expressed in terms of  &  co-ordinates (natural co-

ordinates) we use the chain rule.

dN1 = dN1 d = dN1 1

dx      d dx             d dx / d

= dN1 1         = J-1  dN1

d J                    d
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Here J = dx/ d is the ‘Jacobian’ of

transformations from Cartesian space to

natural co-ordinate space. It can be

considered as the scale factor between the

two co-ordinate systems.
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Jacobian of transformation for 2 Noded 

Linear Element

For a 2 Noded element the shape functions 

are given by  

N1 () =  (1 - )

2

N2 () = (1+)

2
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Now x = N1x1 + N2 x2

= (1 - ) x1 + (1 +) x2

2                2

dx = J  = -1 x1 +  1  x2

d 2 2

= (x2 – x1)  =  L

2           2

Here (x2 – x1) represents the length of the 

element.  So the Jacobian of transformation 

for a 2 noded element is given by L/2
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3- Noded Quadratic element:-

N1 = -/2 (1- )

N2 = (1- ) (1+ )

N3 =  /2 (1+ )

u = N1 u 1 + N2 u 2 + N3 u 3 & 

x = N1 x1 N2 x2 + N3 x3

J = dx =  -1 +2 -2 1 + 2 x1

d 2                 2            x2

x3
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Stiffness Matrix for a 2 Noded Axial 

Element
[K] =  BT D BAdx

0

[B] = du  = dN = 1  dN

dx      dx    J   d

= 2   dN1 dN2

L    d d

= 2   d  (1 -)    d     (1+)

L   d 2        d 2

= 2     -1      1           -1     1

L      2       2    = L     L
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ISOPARAMETRIC TRANSFORMATION
and

NUMERICAL INTEGRATION

LECTURE 12
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ISOPARAMETRIC  ELEMENTS

r

x =       xi Li ()
i = 1

For a linear transformation r = 2

x = x1 N1 () + x2 N2 ()

= x1 (1- ) + x2 (1 + )

2                2



3
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For example an element whose x co-ordinates 

are given by x1 = 3 & x2 = 7

Then x1 = x1 (1 -  ) + x2 (1 + )

2               2

3 =    3 (1 - ) + 7 (1 + )

2               2

or  6 = 3 – 3 + 7 + 7

or 4 = -4 

or = -1

ie the point xi = 3 transforms to  = -1 in natural 

co-ordinate space
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similarly x2 = x1 (1 - )   + x2 (1 +)

2 2

7 =   3 (1 - )   +  7 (1 + )

2 2 

14 = 3  - 3 + 7 + 7

4 = 4  or       = 1

The point x2 = 7 in Cartesian space gets

transformed to 2 = +1 in Natural co-ordinate

space. Similarly every point in X space

transforms to a corresponding point in 

space
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So the transformation 
r

X  = Ni xi () transforms the geometry

i = 1

from Cartesian space to Gaussian space

Similarly we have the approximation of the 

field variable in terms of shape functions 

expressed as           s
u =    ui Ni ()

i = 1
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Here ‘r’ - the number of nodes used for

geometric transformation

‘s’ - the number of nodes used for

approximation of field variable.

In general the polynomial used for geometric

transformation need not be of the same

order as that used for the field variable

approximation.
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In other words two sets of nodes exists for

the same region or element.

One set of nodes for co-ordinate

transformation from Cartesian space to

natural co-ordinate space

One set of nodes for approximating the

variation of the field variable over the

element.
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Depending upon the relationship

between these two polynomials

elements are classified into three

categories as

sub parametric elements       r < s

iso-paramatric elements        r = s

super-parametric elements    r > s
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11



12
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Field variable approximation

Geometric Transformation



15



16
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Jacobian of Transformation
Among the 3 cases given above Isoparametric

are more commonly used due to their

advantages which include the following:

i) Quadrilateral elements in (x,y) coordinates

with curved boundaries get transformed to a

rectangle of (2 x 2) units in (, ) co-ordinates

ii) Numerical integration is more easily

performed as limits of integration vary from –1

to +1 for all elements.



18

We have seen that determination of the

stiffness matrix requires the computation of

derivative of shape functions with respect to

‘x’. However as the shape functions

(Interpolation functions) are expressed in

terms of  &  co-ordinates (natural co-

ordinates) we use the chain rule.

dN1 = dN1 d = dN1 1

dx      d dx             d dx / d

= dN1 1         = J-1 dN1

d J                    d
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Here J = dx/d is the ‘Jacobian’ of

transformation from Cartesian space to

natural co-ordinate space. It can be

considered as the scale factor between the

two co-ordinate systems.
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Jacobian of transformation for 2 Noded 

Linear Element

For a 2 Noded element the shape functions 

are given by  

N1 () =  (1 - )

2

N2 () = (1+)

2
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Now x = N1x1 + N2 x2

= (1 - ) x1 + (1 +) x2

2                2

dx = J  = -1 x1 +  1  x2

d 2 2

= (x2 – x1)  =  L

2           2

Here (x2 – x1) represents the length of the

element. So the Jacobian of transformation

for a 2 noded element is given by L/2
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3- Noded Quadratic element:-

N1 = -/2 (1- )

N2 = (1- ) (1+ )

N3 =  /2 (1+ )

u = N1 u 1 + N2 u 2 + N3 u 3 & 

x = N1 x1 +N2 x2 + N3 x3

= -/2(1- )x1 + (1- )(1+ )x2 +/2(1+ )x3

J = dx =  -1 +2 -2 1 + 2 x1

d 2                 2          x2

x3
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Jacobian of transformation for 2-D

elements:-

In the case of two dimensional elements the

shape functions Ni are functions of both x & y.

When we obtain the same using Natural co-

ordinates the shape functions will be

functions of  & . In order to derive the

stiffness matrices we need to evaluate the

derivatives with respect to x and y. We

therefore apply the chain rule to get
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Ni = Ni x  + Ni y

 x     y     ----- (1)

Ni = Ni x  + Ni y

 x     y    

or in Matrix notation

Ni          x     y       Ni

   x

=               

Ni x    y      Ni

   y
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Ni  = [J]  Ni        ------ (2)

 x

Ni            Ni

 y

Here ‘J’ is the Jocobian of transformation

from Cartesian to Gaussian space. This

gives the relationship between the

derivatives of Ni with respect to the global

and local co-ordinates.

From (2) we obtain
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Ni = [J]-1 Ni ------ (3)

x 

Ni Ni

x 

Hence the Jacobian Martrix [J] must be 

non-singular

[J] =   x    y        

  ------------------(4)

x    y       

 
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We know that x =   Ni (,) xi ----- (5)

i =1

m

y =    Ni (,) yi

i = 1

m                        m

 x  =    xi Ni y  =  yi Ni ---- (6)

 i = 1   i = 1 

m                                           m

x  =    xi Ni y  =  yi Ni

 i = 1   i = 1 
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Substituting equation (6) in (4) we get

[J]=  xi Ni  yi Ni

 

 xi Ni  yi Ni

 

= N1 N2 N3 ….. Nm x1 y1

    x2 y2

N1 N2 N3 ….. Nm xm ym

   
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 



































































zyx

zyx

zyx

J

In general the Jacobian of transformation

in 3D is given by
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 



































































zyx

zyx

zyx

J
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Problem:
Evaluate the Cartesian co-ordinate of the 

point P which has local co-ordinates  = 0.6 

and  = 0.8 as shown in the Figure.
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Given: Natural co-ordinates of point P

 = 0.6

 = 0.8

Cartesian co-ordinates of point 1,2,3 and 4

5;4

8;6

4;9

2;3

44

33

22

11









yx

yx

yx

yx
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To Find: The Cartesian co-ordinates of the point 

P (x,y)

Solution:

Shape functions for quadrilateral element are,

)1()1(
4

1

)1()1(
4

1

)1()1(
4

1

)1()1(
4

1

4

3

2

1

















N

N

N

N
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Substituting the values

18.0)8.01()6.01(
4

1
)8.0,6.0(

72.0)8.01()6.01(
4

1
)8.0,6.0(

08.0)8.01()6.01(
4

1
)8.0,6.0(

02.0)8.01()6.01(
4

1
)8.0,6.0(

4

3

2

1









N

N

N

N
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 )02.7,82.5(),(

02.7

)5(18.0)8(72.0)4(08.0)2(02.0

,

82.5

)4(18.0)6(72.0)9(08.0)3(02.0

,

44332211

44332211















yxareordinatesCo

y

yNyNyNyNyordinateCo

x

xNxNxNxNxordinateCo
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Problem

Evaluate                      for the linear 

quadrilateral element shown in Fig.
2

1
][ atJ
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Given:
Natural co-ordinates at point, P

5.0
2

1
;5.0

2

1
 

8;3

10;8

5;7

4;4

44

33

22

11









yx

yx

yx

yx

Cartesian co-ordinates of point 1,2,3 & 4
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To Find:1.Jacobian matrix [J].

Solution: Jacobian matrix for quadrilateral 

element is given by,

  









2221

1211

JJ

JJ
J 







































yx

yx

J
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])1()1()1()1([
4

1

])1()1()1()1([
4

1

])1()1()1()1([
4

1

])1()1()1()1([
4

1

432122

432121

432112

432111

yyyyJ

xxxxJ

yyyyJ

xxxxJ
















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375.2

]8)5.01(10)5.01(5)5.01(4)5.01([
4

1
)5.0,5.0(

25.0

]3)5.01(8)5.01(7)5.01(4)5.01([
4

1
)5.0,5.0(

875.0

]8)5.01(10)5.01(5)5.01(4)5.01([
4

1
)5.0,5.0(

25.2

]3)5.01(8)5.01(7)5.01(4)5.01([
4

1
)5.0,5.0(

22

21

12

11

















J

J

J

J
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 





















375.225.0

875.025.2
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Stiffness Matrix for a 2 Noded Axial 

Element
[K] =  BT D BAdx

0

[B] = du  = dN = 1  dN

dx      dx    J   d

= 2   dN1 dN2

L    d d

= 2   d  (1 -)    d     (1+)

L   d 2        d 2

= 2     -1      1           -1     1

L      2       2    = L     L
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+1

[K] =   A ∫ –1/L  E <-1/L 1/L>  J d

-1 1/L

+1

= EA ∫ –1/L     < -1/L  1/L >  L/2 d

-1 1/L

+1

= EAL ∫ 1/L2 -1/L2 d

2   -1 -1/L2 1/L2

+1

= EA       1  –1 ∫ d = EA 2   1  -1

2L       -1   1 -1                    2L -1   1
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Problem:
For the four noded rectangular element

shown if Fig. determine the following:

i) Jacobian matrix

ii) Strain-Displacement matrix

iii)Element stresses

Take E = 2 x 105 N/mm2; v = 0.25;

u =[0, 0, 0.003, 0.004, 0.006, 0.004, 0, 0]T

= 0 ;  = 0

Assume plane stress condition.
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1;0

1;2

0;2

0;0

44

33

22

11









yx

yx

yx

yx

Cartesian co-ordinates of point 1,2,3 & 4

Young’s modulus, E = 2 x 105 N/mm2

Poisson’s ratio v = 0.25
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0,0,

0

0

004.0

006.0

004.0

003.0

0

0

,









































ordinatesCoNatural

untDisplaceme

To Find: 1. Jacobian matrix, J.    

2. Strain Displacement, [B]

3. Element stress, 
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Solution:

  









2221

1211

JJ

JJ
J

])1()1()1()1([
4

1

])1()1()1()1([
4

1

])1()1()1()1([
4

1

])1()1()1()1([
4

1

432122

432121

432112

432111

yyyyJ

xxxxJ

yyyyJ

xxxxJ










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
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5.00
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 
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Strain- Displacement matrix for quadrilateral 

element is,





















































)1(0)1(0)1(0)1(0
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0)1(0)1(0)1(0)1(

4

1
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1
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12221121
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1222









JJJJ
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
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
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
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45.0
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5.015.015.015.01
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1
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




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25.0][B

Element stress,  = [D] [B] {u}
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matrixiprelationshstrainStress
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
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



















5.100

041

014

25.01033.213
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0125.0
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

















5.100

041

014

1033.53][ 3D

Substituting the values in Element stress 

equation

   dBD
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NUMERICAL INTEGRATION 

In the isoparametric formulation of higher

order elements we see that the strain-

displacement matrix [B] is given by

[B] = du = dN  [] = 1   d[N]

dx    dx          J    d

=  1     d   (- + 2 1 – 2  + 2)

J     d 2                        2
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Here J = (-1 + 2 -2 1 + 2)

2                         2 

Therefore Matrix [B] is a function of , with

polynomials in  in its denominator because of

the 1/J factor. Hence the equation (A) cannot

be integrated to give on the solution. Hence

we resort to numerical integration.
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So evaluation of integrals of the form

b

 F(x) dx becomes difficult or impossible in
a

cases where the integrand F has functions of

x in both numerator denominator.

The basic idea behind whatever numerical

integration technique we may employ is that of

obtaining a function P(x) which is both a

suitable approximation of F(x) and simple

enough to integrate.
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Referring to Fig the variation of F(x) is

b

shown. Evaluation of the Integral  F(x) dx

a

will yield the area under the F(x) curve

between points x1 (= a) & x2 (= b).
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))........((
2

)( 72180 yyyyy
h

dxxF

b

a



“Trapezoidal rule”,
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Trapezoidal Rule             Simpsons Rule
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Gauss Quadrature:- Amongst the several

schemes available for evaluating the area

under the curve F(x) between two points the

gauss quadrature method has proved to be

most useful for isoparametric elements. As in

isoparametric formulation, the limits of the

integral are always from –1 to +1, the problem

in gauss integration is to evaluate the integral

+1

I =        F() d.

-1
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The simplest and probably the crudest way to

evaluate the integral is to sample or evaluate

F() at the mid point of the interval and to

multiply this by the length of the element

which is ‘2’ [because 1 = -1 & 2 = 1 &

(2 – 1) = 2]

 F(x) dx = I = 2 fi

This result will be exact only if the actual

function happens to be a straight line.
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One point formula
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We can extend the same to take two sampling points

or three etc.Generalization of this relation gives

+1

I =  F() d = w1f1 + w2f2 + ….. wnfn
-1

n

=  wif (i)

i = 1

Here wi is called the ‘weight’ associated with the ith

point and n is the number of sampling points. The

Table (1) gives the sampling points and the

associated weights (wi) for Gauss quadrature.
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No.of

points

Location Weight Wi

1 1 = 0.00000 2.00000

2 1,2=0.57735 1.000000

3 1,3=0.77459

2 =  0.00000

0.55555                               

0.88888

4 1,4=0.8611363

23 =0.3399810

0.3478548

0.6521451
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Thus to approximate the integral I, the

function f() is evaluated at each of several

locations i, and each f(i) is multiplied by

the approximating weights w. The

summation of these products gives the

value of the integral. The sampling points

are generally located symmetrically with

respect to the center of the interval.

Symmetrically paired points have the same

weight wi.
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As an example consider the evaluation of the 

Integral I using 2 sampling points i.e. n = 2.

I  (1.0) ( f at  = - 0.577350269189626) + 

(1.0) (f  at  = + 0.577350269189626)
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In general if we know that the integral to be

evaluated is of order p then the number of

sampling points required n is given by the

relation

2n-1 = p 

The calculated number of sampling points can 

be rounded off to the nearest integer
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Problem

Evaluate the integral                            and 

compare with exact solution.

Given: Integral,

To Find: The integral I by using Gauss 

quadrature.






1

1

2 )2( dxxxI






1

1

2 )2( dxxxI

22)( xxxf 
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Solution:
We know that , the given integrand is a 

polynomial of order 2.

So, 2n-1 = 2

 2n =3

 n = 1.5  2

For two point Gaussian quadrature,

1577350269.0
3

1

1577350269.0
3

1
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11





wx

wx
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Exact Solution:

     
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Using Gauss Quadrature evaluate the

following integral using 1 2 and 3 point

Integration.

i)
ii)

iii)
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,=0.57735

n

F(,) =  f (i ,i ) wiwj

i=1


