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Why FEM ?

Predictive Method of Analysis
VS
Experimental Analysis




What i1s FEM ?

» Determination of the solution for a
complicated problem by replacing it by
a simpler one.

» Geometrically complex domain
represented as a collection of smaller
manageable domains.



» Solution to these geometrically
simple domains Is easier.

» Replacing the original complex
geometry as an assemblage of smaller
simple geometry will result in only an
approximate solution.



Lower bound solution

Area =6 X A,
App.Area < actual P
Area area

No of sides

Upper bound solution

Area Area =6 X A,

App.Area > actual area

No of sides



Where FEM ?
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resorption formation



FEM

FEA (finite element analysis), or
FEM (finite element method), was
primarily developed by engineers
using physical reasoning and can
trace much of Its origin to matrix
methods of structural analysis.



The finite element method Is a
computer aided mathematical
technigue that Is used to obtain an
approximate numerical solution to
the fundamental differential and/or
Integral equations that predict the
response of physical systems to
external effects.



What i1s meant by external influence?

+When a bar is subjected to an axial pull
‘P’ it elongates

+When a metallic rod is heated
Its temperature rises

4+When a beam is subjected to an
external harmonic excitation it vibrates



In the above examples the force ‘P’, or
heat flux ‘q’ or harmonic excitation
force constitute the “external influence”
that causes the system to change.

The elongation, temperature rise or
vibration represents the system’s
response to the external influence.



Why FEM ?
Mathematical modeling to simulate
physical happening




When FEM ?

Complex geometry
Complex loading

Complex material
properties




Applications

« Structural Engineering
*Aerospace Engineering
Automobile Engineering
*Thermal applications
*Acoustics

Flow Problems

Dynamics

Metal Forming

Medical & Dental applications
*Soil mechanics etc.



NUMERICAL SOLUTION
TECHNIQUES

Weighted Residual Methods - Collocation method
- Sub domain method
- Least squares method
- Galerkin method

~inite Difference Method
Rayleigh Ritz Technique
~inite Element Method
Boundary Element Method




FEM

Mathematical modeling to simulate
physical happening

e T




Field Variable/
dependent variable
Primary variable

Cross-sectional
property

Governing
Equation

E A (d20/dx2) + y A = 0

3 ,

Independent
variable or
spatial co-

ordinate

Material
Properties



Example of a taper rod subjected a point load ‘P’
and its own self weight

c A(X)

LSS

dx (. /

dx \

(o + do) A (X)
v A(X) dx (self weight)



G A(X)

For equilibrium (o +do) A(X) +YAX)dx-cA(X)=0 --(1) | . 4

l.e) do AX) + YA(X) dx =0 ---(2) crimiw
> — Ee_gdu (3) A(X) = AO - (A0-AL) /1
dXx
Where o - stress, € - strain & E - Young’s Modulus from continuum

mechanics, € = du/ dx

3)in (2) & dividing by dx.> - d (6A(X))

+ yA(X) =0

du
_ d[A(x)dX

dx

] +yA(X) =0 — (4)

For a bar of constant cross section / 2

EA(X) 373 +7A(X) =0 — (5)




1.

E

(d[

du
A(X) dx

|

N

N

dXx

/

FIA(X) =0 —> (4)

Boundary conditions

U@0) = 0

EA(x) —

du

Ax=L




Variables:

»Primary

eg. Displacement, u
Temperature, T

»Secondary

eg. Force EA du/dx
Heat flux —-KA dT/dx



|_oads:

»>\Volume loads N/m3 N/m
eg. Self weight, udl

»Point loads N



Problems that could be solved
by the FEM

1. Boundary Value Problems
2. Initial Value Problems

3. Eigen Value Problems



Boundary Value Problem (BVP)

A boundary value problem Is one where the
fleld variable (e.g., temperature or
displacement) and possibly its derivatives
are required to take on specified values on
the boundary
(e.g.,
KAdT/dx =0Q,
where K= Thermal conductivity,
A = area of cross-section,
Q = Heat flux).



- o kA T g - T = 0
dx X
Boundary conditions: @ x =0, T=T,
@x=1, -KA (dt/dx)=0
.
T=T[| ,
/ x=]
~/




Initial Value Problem (IVP)

An Initial value problem is one
where the field variable and
possibly Its derivatives are
specified initially (i.e., at time t=0).
These are generally time dependent
problems.

Examples include

Unsteady heat conduction

Dynamic problems



Initial conditions: @ timet =0
1) du/dt =C,

where Velocity = du /dt

I1) displacement u = a,

350K

t=1 Sec



Eigen Value Problem (EVP)

An eigen value problem Is one
where the problem is defined by a
homogeneous differential equation
that Is one where the right hand side
IS zero. An important class of eigen
value problems is the ‘Vibration of
Beams” or continuous systems.



Eigen Value Problem (EVP)

First mode shape

Second mode shape

Third mode shape @



DIMENSIONALITY

Physical problems can be classified
Into

(1) I dimensional

(i) 1l dimensional

(111) 1l dimensional problems.



Geometry Boundary

|
_



I-D PROBLEMS:-

When the geometry, material
properties and field variables such as
displacement, temperature, pressure
etc can be described in terms of only
one spatial co-ordinate we can go In
for one-dimensional modeling

L

g




2D PROBLEMS:-

When the geometry and other
parameters are described in terms of two

iIndependent co-ordinates we go Iin for
two-dimensional modeling.

L

/ y




3D PROBLEMS:-

If the geometry, material properties and
other parameters of the body can be
described by three independent spatial
co-ordinates, we can discretize the body

using 3 dimensional modeling.




Exact and approximate solutions:

»An exact solution satisfies the differential
equation at every point in the domain and
the boundary conditions on the boundary

»An approximate solution satisfies the
boundary conditions completely and as
closely as possible the differential equation



1.

(d[A(x) du]\

N

dXx

dXx

/

F2A(X) =0

Boundary conditions

U@0) = 0

EA(x) d—U
dx

X=L

1
5




% SR
d{A(x)du}
E d + yA(x) =R
dx
\ J
R — RESIDUE

u - approximate solution

U, —u = Error in solution



NUMERICAL SOLUTION OF BVPs

(i) Choose a trial solution U(x) for U(x)

(i) Select a criterion for minimising the error
U(x) can be a trigonometric function such as Asinx
or a logarithmic function log x
or a hyperbolic function

or polynomial functions
U(X) =a, +a,x + ax* +a,x’



1l 3
U(X) = a, +a,X + a,x’ + a, X
f(x) = 3 ax!
1=0

U(X) = a‘O (I)O (X) T al (I)l (X) ... T an (I)n(x)



1. Methods of weighted residuals (WRM)
which are applicable when the governing
equations are differential equations.

2. Ritz variational method which is applicable
when the governing equations are variational
(integral) equations with an associated quadratic
functional.



The WRM criteria seek to minimise the error

Involved In not satisfying the governing differential
equations.

The most popular methods are

(1) The Collocation method.
(i) The Sub-Domain method
(i) The Least squares method.
(iv) The Galerkin method.




—— approximate solution
—— exact solution



EA du/dx

—— approximate solution
—— exact solution



—— approximate solution
exact solution




COLLOCATION METHOD

For each undetermined coefficient a;, choose a
point x; In the domain and at each such point called as
collocation point force the residual to be exactly zero

R(x,) = 0
R(x;) =0
le. Rx,) = 0

The collocation points may be located anywhere
on the boundary or in the domain.



THE SUB-DOMAIN METHOD

For each undetermined parameter choose an
Interval AX, Inthe domain. Then force
average of the residual in each interval to be
Zero.

1

[ R(X)dx =0

A X,
1
| R(x)dx =0
AX, ax,
1
[ R(x)dx =0

AX, ax,



LEAST SQUARES TECHNIQUE:

In this method we minimize with respect to
each undetermined coefficient the integral of
the square of the residue over the entire

domain

2
0106 alj R2 (x) dx =0
1

f R(x)(@R/da,) dx =0

1



THE GALERKIN METHOD

For each undetermined parameter we
require that a weighted average of R(x) over the
entire domain be zero. The weighting functions
are the trial functions associated with the
generalised coefficients

[ R(X) ¢, (09 dx = 0



GENERAL WRM

j R(X)w. () dx=0 i=1,2,...,n
Q
(1) The Collocation method - dirac delta function
(1) The Sub-Domain method - Unity
(1) The Least squares method - Residue
(iv) The Galerkin method — coefficient of the
undetermined coefficients in the trial solution
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The finite element method Is a
computer aided mathematical
technigue that Is used to obtain an
approximate numerical solution to
the fundamental differential and/or
Integral equations that predict the
response of physical systems to
external effects.



When FEM ?
Complex geometry

Complex loading

Complex material
properties




FEM

Mathematical modeling to simulate
physical happening

e T




;
0 [ A(S)

3l

o¢

\

/

+ yyA(S)

0-C 4)

Boundary conditions

u(0)=0
du
EA(X) a0

_Pp

X=L




Variables:
»Primary
eg. Displacement, u
Temperature, T
»Secondary
eg. Force EA du/dx
Heat flux —KA dT/dx
Moment — El (d°w/dx?)



BOUNDARY CONDITIONS:

> Essential/ Geometric/ Dirichlet
Boundary conditions
»Natural/ Force/ Neumann

Boundary conditions



BOUNDARY CONDITIONS CAN BE OF
THE FOLLOWING TWO TYPES

» HOMOGENEOUS eg. u(0)=0
» NON-HOMOGENEOUS eg. T(0)=80



Loads:

>Volume loads N/m°3 N/m
eg. Self weight, udl
>»Point loads N



Exact and approximate solutions:

»An exact solution satisfies the
differential equation at every point in the
domain and the boundary conditions on

the boundary

»An approximate solution satisfies the
boundary conditions completely and as
closely as possible the differential

equation



e

\

AG) dU] A

dx

dx

%

FYA(X) =0

Boundary conditions

U0 =0
du
EA(X) ™

X=L

P




% SR
d{A(x)du}
E d + yA(x) =R
dx
\ J
R — RESIDUE

u - approximate solution

U, —u = Error in solution



—— approximate solution
—— exact solution



EA du/dx

—— approximate solution
—— exact solution



—— approximate solution
exact solution




NUMERICAL SOLUTION OF BVPs

(i) Choose atrial solution u(x) for u(x)

(1) Select a criterion for minimising the error
U(x) can be
a trigonometric function such as Asinx
or a logarithmic function log x
or a hyperbolic function

or polynomial functions
u(x)=a, +a, x+a, x> +a, x°



u(x)=a, +a, x+a,x’>+a, x>

f(x):i a X!

o = X

u(x) =a, ¢, (X) +a, ¢ (X) +...+a, ¢,(X)



The WRM criteria seek to minimise the
error involved In not satisfying the
governing differential equations. The
most popular criteria are

(1) The Collocation method.
(1) The Sub-Domain method
(1) The Least squares method.

(iv) The Galerkin method.



CONSTRUCTION OF A TRIAL SOLUTION

We know that any function f(x) can
be expanded in a power series as

f(x):i a X'

Thus the function f(x) can be written as a sum
of series of functions with appropriate

constants. Similarly the approximate or trial
solution Is sought In the form

U(X)=a, @, (X) +a, ¢, (X) +...+a, ¢, (X



(X) =8, ¢ (9 +2, 4 (9 +...+3, 4,4

¢. (X) -trial functions or basis functions

q. - undetermined constants or
generalised co-ordinates

Generalised Co-ordinates approach



1. Methods of weighted residuals

(WRM) which are applicable when

the governing equations are
differential equations.

2. Ritz variational method (RVM)
which Is applicable when the
governing eqguations are variational
(integral) equations with an
assoclated quadratic functional.



ILLUSTRATIVE PROBLEM

Consider the equation

d| du| 2

dx Xd_x ~ y2 Inthedomainl < x < 2

with B.Csas 1)u(l) = 2 and

iy |y du 1
dx |,_, 2




Flux/ secondary

variable



Let u(x)=a, +a, X +a,x’ +a, x°

BC (i) — u(l)=a,+a,+a,+a, =2

or g, =2-a,X-a,-a; T (1)
BC (i) | du 1
_(>) _Xd—; :-2(a1+4a2+12a3):§

| 14X =2

a1=—£—4812—12a3 """"" (2)

A4



Substituting for a, and a, in the expression for
U (x),we have

G(x):z-%(x-1)+a2 (x-1) (x-3) +a, (x-1) (x> + x—11)
= §o * a g (X) + az ¢, (X)
where b, = 2 - %(x-l)
¢, = (X -1)(x - 3)
o, = (X - 1) (x* + x -11)



u(x) = 2-%(x-1) +a, (x-1) (x-3) +a, (x-1) (x? +x—11)

It can be easily seen that the above trial
function satisfies the conditions imposed on
the boundary. Thus the construction of trial
function Is over.



WRM APPLICATION

Consider the eqguation

d du _ 2
X — =
dx dx  Xx°
or
i Xd_u -320
dx dx X°

Substituting the trial solution G(x) for u(x),
this equation is unlikely to be satisfied.
l.e., the RHS Is a non-zero function, R(X)



da xd—u -%#O

dx dx X

This is called as the ‘Residual’ and is a
measure of the error involved In not

satisfying the Governing equation.
1

.e. R(x) =

R(X) = - ~+4(x-1)a, +3(3x*—4)a, -

4

2

X2



COLLOCATION METHOD
For each undetermined coefficient 3. choose
a point X, In the domain and at each such
point X, force the residual to be exactly zero

. R(x;) = 0
SORKG) = 0
Rx,) = 0

he chosen points are called collocation points.
hey may be located any were on the boundary
or in the domain. For the present problem we
have 2 undetermined coefficients @, & ;.




Choose X, = 4/3 & X, = 5/3
Substituting In the expression for R(x), we get

ﬂa + 4 a - 1
3 ° > 8
—a, +13a, = %

Solving the simultaneous equations
a,=2.0993 &a, = -0.356

therefore, 1
u(x)=2- 2 (x-1) +2.0993 (x-1) (x-3) -

0.356 (x-1) (x* +x—11)



THE SUB-DOMAIN METHOD

For each undetermined parameter di,
choose an interval Ax; Iin the domain. Then
force average of the residual in each interval

to be zero.

1
R(x)dx = 0
Ax, ijl (x) dx
1 _
X AjXZR(x) dx = 0
. | R(x)dx =



which yields a system of n residual equations
which can be solved for a.The intervals AX;
are called the ‘sub domains.”. They may be

chosen in any fashion.

Taking AX, 1 < x < 1.5 2

AX, 15 < x < 2



1 2
—j R(x) dx =0
O'51.5
1 1.5

— | R(x)dx =0
05 ) RO

a, = 2.5417
a, = -0.4529

3

we get

u(x) =2 % (x-1) +2.5417 (x-1) (x-3) -

0.4529 (x-1) (Xx* + x—11)



LEAST SQUARES TECHNIQUE

In this method, we minimize with respect to
each undetermined coefficient the integral of
the square of the residue over the entire

domain
2
010 aij R? (x) dx =0
1

jZR(x)(aR/aai) dx =0



2
j 2R(X)(0R/Pa,) dx =0
1
2
j 2R(X)(0R/6a,) dx =0
1

a, = 2.3155

a, =-0.3816

u(x) =2 -%(x -1) +2.3155 (x-1) (x-3) -

0.3816 (x-1) (x* + x—11)



THE GALERKIN METHOD

For each parameter &;; we require that a
weighted average of R(x) over the entire
domain be zero. The weighting functions

are the trial functions ¢;(X) associated

with &
2

] R(X)¢; (x)dx =0



u(x) = 2-%(x-1) +a, (x-1) (x-3) +a, (x-1) (x? +x—11)

j R(x) (x-1)(x-3)dx =0

j% R(X) (Xx-1)(x* +x-11) dx =0

1

o a, = 2.3178
This yields a, =-0.3477

U(x) =2 -%(x-l) +2.3178 (x-1) (x-3) -

0.3477 (x-1) (x° +x—11)



jR(x)wi(x)dx:O 1=1,2,...,n
Q
1) The Collocation method - dirac delta function

i) The Sub-Domain method - Unity

) The Least squares method - Residue

IV) The Galerkin method — coefficient of the
undetermined coefficients in the trial
solution



jR(x)Wi(x)dx:O 1=1,2,...,n

The Collocation method - dirac delta function

| ROSdx=0 5 is zero every where

2 except at x = X,
o0 =(X-X,)



IR(X)ldXZO i=1,2,...,n
Q

The Sub-Domain method - Unity

j R(X) R dx =0
Q
The Least squares method - Residue

J R4 () dx =0

Q

The Galerkin method — coefficient of the
undetermined coefficients in the trial solution




Examples of One-Dimensional BVPs

1. Elastic deformation of a bar

A tapered circular bar made of steel is
suspended vertically with the larger end rigidly
clamped and the smaller end acted on by a
pull of 10> N. The areas at the larger and
smaller ends are 80 cm? and 20 cm?,
respectively. The length of the bar is 3m. The
bar weighs 0.075 N/cc. Young’'s modulus of
the bar material is E =2 x 107 N/ cm? . Obtain
an approximate expression for the
deformation of the rod.




A=80cm’

VAP AP AV A

A(X) =A; — (A;-A) X/
le.A(x) = 80 — (80-20)x/300
= (80 — 0.2x)

vy = 0.075 N/cm3
E=2x107 N/cm2



Governing equation of the problem is

E{EA(x)d_u}yA(x):O 0<x<L
dx dx

With the boundary conditions

u(0) =0and | EA(X) 3—” =1

= dx=L

Given

P =105 N v = 0.075 N/cm3
E=2x10"N/cm? L=300cm and
A(X) = (80 -0.2x) cm



Step 1 Choice of Trial Function

Let u(X)=a, +a, x+a, X" +a, x> -

Applying the B.Cs (1) and (2) we have
a,=0 and a, =25 x10™ - 600 a, - 27 x10" a,

The trial solution takes the form

u(x)=x[2.5x10™ - (600 - X) a, - (27 x10* —x*) a, ]



Step Il Optimising Criterion using the
Collocation Method

The residual at any point is given by

R(x)=2x10" x[-0.5x10™* +a, (280 - 0.8x) +
a, (5.4 x10* +480 x-1.8 x*) +3x107" -0.75 x 107" x]

Choosing the two points x, =100 cm & X, =200 cm and
forcing R(x,) & R(x,) to take zero values, we arrive at a
simultaneous equation for a, & asand the solution of

which turns out to be



a, = 0.21846 x 10°
a, = 0.72411 x 107

U (x) = x[2.5x10™-0.21846 x 10 (600 — X)
-0.72411 x10™° (27 x10* - x,)



2) Heat transfer through Fin

Material - stainless steel

Thermal conductivity K=17.7 W/mK
Film Coefficient h =20.0 W/m?K
Thickness at root t,=0.025 m
Length L =0.1m
Assume unit width b =10 m
Ambient temperature T_=40°C

Wall temperature T,=600° C

Tip temperature T, =40°C =Tw



—
t=0.025m

\

- 1=0.1m —



Governing equation Is

_ i{KA(x) dT(X)} Fhp[T(X) -T.] = 0 —ooecreeee
dx X
. T(0) = T,
Boundary Conditions W) = T

Let T(x) = T(X) = a, + a, X + a, x> + a, x°

Substituting the boundary conditions

a, =600

a, =-5600-0.1a,-00la, T 2
T(x) =600 -5600 x +a, X(x -0.1) +a, X (x* —0.01)



The thickness at a point x-from the root,
t(x) = (1-x/L)

Substituting (2) in (1), the residue Is given by

d

- &[KA(X)

dTﬂ Fhp[T) - T :




Collocation Method

Choosing points X; = 0.03 and
X, =0.06, and forcing the residue to be
zero at these points.

~ R(X) =0
.e. R(X,) = 0
leads to a set of simultaneous equatlons
10.88197 0.0991686 | (a, 8825.6 |

T = 3 >

0.36246 0.0756936 | |a,|  |15730.4]




Solving for a, and a,
a, = 2894451
a, = -346418
substituting in (2) yields the approximation for

the temperature distribution.
The closed form solution is given by

T(X)=40- 1502.3Vx (6)
Comparison
X ch(X) Tapp(X)
0.03 437.5 465.79

0.06 340.5 327.56



RITZ VARIATIONAL METHOD
(Weak Formulation)

Starting with the equation

d du .
&[a (X) d_x]f(x) =0iIn Q

The WR becomes

jW(x) {dix{a (X) 2—5}-1‘@) dx =0

W(X) -- weighting function
e, | R(X) w(x) dx



Observations:

»>UuU Is differentiated twice, while W(X) Is
remaining undifferentiated.

» So trial functions should be differentiable at
least twice.

»But continuity of derivatives of higher order
IS very difficult.

» Hence preferable to reduce the order of
derivatives of u as much as possible



This could be achieved by integration of the
eqguation by parts.

[ W [ = (@ d—”)} cx = [W(x) (@ () d—“)}
%a X dx X

X" Jx,
Xb
[ a() du AW
o dx dx
The equation can be now recast at
Xb Xb
[ a() QU AW i = - [ £00 W) dx
dx dx

Xa Xa

+ {W(x) [ o (X) :—)ﬂ }

l.e., B(u,W) = {(W) B is the bilinear and { is the linear



Recasting of the given differential equation
In this form where the order of derivatives
are traded between the trial function and
the weighting function, thereby weakening
the continuity requirement on the tral
functions Is called 'Weak Formulation’.
The original equation Is recast into its Weak
Form.

The Ritz method we take, W(X) = & U (X)
Where u(x) Is specified, as at the boundary,
W(x) = 0.



APPLICATION OF VARIATIONAL
FORMULATION

lllustrative Example for Variational
Formulation

Consider the elastic deformation of
a tapered - rod under its weight and also due
to applied pull at the free-end, considered

previously.



The governing equation Is
i[EA(X)%] + YA(X) = 0 in 0<x<L
dx dx

With B.Csi)u(0) = 0O

and du (X)
At x=1 P =EAX) T




The WR formulation is
. d
(I) w(x) { O
where w(x) Is the weighting Function
and u(x) Is the trial solution. Integrating
by parts and r-arranging, we get

[EAK) o 1+ 1AM} dx = 0

du dw

T EA(X) — — dx = T v A(X) w(x) dx - w(0) P(0) + w(L) P(L)
0 dx dx 0

l.e. B(u, w) = ¢2(w)



since u(0) = 0 (specified), w = 5.u. at
X = 0 vanishes
.e. W(O) =0 P(L) = P - specified

B(U, W) = j EA(X) —)”(' (31_\/;: dx

—

/(W) = [ vy AX) w(x) dx + Pw(L)

0



Since the bilinear term B Is symmetric [B (u,
w) = B (w, u)] a quadratic functional [(u)
exists and is given by I(u) = 1/2 B (u, u) - (u)

I(u) = I % EA(X) ddix dx I YA(X) u(x) dx - p o u(L)

strain-energy of deformation External work External workdone
by distributed load by concentrated
load

clearly I(u) gives the Total Potential of the
elastic system, which is stationary

ol(u) =0 = j EA(X) —X O % dx - T v A(C) ou(x) dx - pd u(L)




we know that w(x) = ou(x) and threfore

55(99) ::-EL (du) = aw

dx dx dx
" We get
L L
FEAG) M MW gy = v AX) w(x) dx - Pw(L)
0 dX dX 0

B(u,w) = /(w) - the weak form



Ritz Method of Solution
ux) = a, +a,x +a,x’ +a,x’
Essential boundary condition is u(0) = 0

We get a, = 0 and

u(x) = 23: a; ¢ (X) where ¢, (X) = X’



The weighting function is w(x) = ¢, x 1=1,2,3

substituting in the Weak-form of the governing
equation.
This leads us to the equation

ZajEA(x)d(I) (;(I))(' dx = r, 1=1,2,3

where = T v A(X) . (X) dx+ P . (L)

|
0



on evaluation of the integral within the

brackets, this reduces to the set of

algebraic equations.

K,, k
K., k

Where k;

k11 k12

k13
k23
k33 _

L

J EA(X)

do,

do;

dx

dx

dx




Solution of this matrix equation leads to
determination of the constants a,,a, and
a, there Dby giving the approximate
solution.

3 :
— j
=1
For the given Illustrative

example of a tapered rod under its weight
and also due to applied pull at the free-
end



For the given lllustrative example of a
tapered rod under its weight and also due to
applied pull at the free-end



EA(X) do,  do, dx

kll = d
X dx
= E(80-0.2x).1.1dx = 1.5 x10* E
do, do
k., = EA : 2 d
12 (X) i ax &

= E(80 - 0.2x).1.2x..dx = 8.6x108 E

do, do
k.. = EA(X L 3 dx

=E(80 - 0.2x).1.3x.2. dx =8.6 x108 E

Where k,; = .......... Koo = iiiiiin i
k23 — i eeeaaes K31 — i ireasans



rr = yAXX) @ dx =y (80-0.2X) .x.dx =1.3773 x10°
r, = yAX) ¢, dx=y(80-0.2x) .x*.dx =1.3773 x10’
r, = yAX ¢, dx=y(80-0.2x) .x°.dx =1.3773 x10°
p, =p.4 (L) =pL = 3x10’

p, =p.¢4 (L) = pL® = 9x10°

p, =p.4 (L) =pl° = 27x10"

15x10'  36x10° 9.45x10°| [a]  [137 x 10°+3 x 10'
36x10°  12x10° 288x10" | *|a,| = |24 x 1049 x 10°
945x10° 388x10" 1322x10*| [a;|  |4598x 10°+27x 10"




On solving

a, = 6.6762 x 10°
a, = -4.946 x 10
o = 6.4736 x 107

Ul,., = a (300) + a, (300)° + a, (300)= 0.033056 cm

But the Strength of Mat Method give 6= 0.0378 cm



2
d—<b(x)g> + c(X)u = f(x) 0 < x <L

Weak form of the above equation reduces to
B(u,w) = l(w)

j [b(x) gxf — ~+c(x) uw ] dx = jf(x) w(x)dx +(i|—b() |




Denoting b(x) = 3_2‘2‘ = M(X)
X

and i
d— = Q(x)
X

We have

“(w) = I FOOW(X) dx + fj—VXV M) | -w Q)|



In the case of elastic beams

b(x) = EI(X) - the flexural rigidity

c(x) = K - stiffness of the elastic
foundation for static problems.

u(x) - Transverse displacement at
any point

M(X) - Bending moment

Q(X) - Shear force



Looking at the boundary terms, the terms
containing the weighting function viz. o(X)
and dw/ds represent the essential boundary

conditions. 1.e.

w(X) = o (u(x)) -Specification of transverse
displacement, u

dw B du e B d_u
&(x) = 3 (dxj - Specification of slope 6 = ™



Since the bi-linear functional B(u, w) Is
symmetric, we have a quadratic functional
that exists and is stationary. This functional is
given by

() = % B (u, U) - £(u)

- [b(x)( ) + ¢(X) u?] dx - f(x) u(x) dx - M(0) 6(0)
=2 dx

+ M(L) 6(L) - w(L) Q(L) + w(0) Q(0)
This Is nothing but the Total Potential of the

system which Is a minimum at equilibrium
configuration



LECTURE 3



RITZ VARIATIONAL METHOD

(Weak Formulation)

Steps:

1) Bring all the terms of the governing
eguation to one side of the equality

1) Multiply with a weighting function
W (X)

lll)Integrate by parts over the limits of
the domain

Iv)Separate linear and bilinear terms

v) ldentify the boundary terms




RITZ VARIATIONAL METHOD
(Weak Formulation)

Starting with the equation
i[a (%) C—u]f(x) =0in O

The Weighted residue becomes
jw(x) im(x)d—“}-f(x) dx ]=0
dx

Xa

W(X) -- weighting function

e, | R(X) w(x) dx




Observations:

»>U Is differentiated twice, while w(x) Is
remaining undifferentiated.

» S0 trial functions should be differentiable at
least twice.

»But continuity of derivatives of higher order
IS very difficult.

» Hence It Is preferable to reduce the order
of derivatives of u as much as possible



We note that the first term iIs of the form

Iudv: uv\—jvdu

[ wx [ = (@ (9 j—i)} dx = [w(x) (@ %) j—i)}

Xa a

Xb
I a(x)d_Ud_WdX
o dx dx



The equation can be now recast as

j a(x)g—ii’—\;\/dx: j f (x) W(X) dx{w(x)[a(x) j—i”

IS a linear function of both field variable
and weighting function = B(u,w)



Xb

And - | FOOW() dx

Xa

IS a function of weighting function alone

1 71® Represents the
{W(X) [ a () d—x} } boundary term where
{ () d_U} Is the flux or secondary
variable



l.e., B(u,w) = {(w)

B is the bilinear function and £ is the linear
function

Xb

j a(x)d—Ud—de:-T f (x) W(X) dx{w(x)[a(x) d—“} }
dx | |,

W dx dx o

The above represents the weak form of the
original Governing equation

8



Recasting of the given differential equation
In this form where the order of derivatives
are traded between the trial function and
the weighting function, thereby weakening
the continuity requirement on the trial
functions Is called ‘Weak Formulation’.

The original equation Is recast Into ItS
Weak Form.



In the Ritz method we take, W(X) = ou(X)
which implies that where ever u(x) Is specified,
as at the boundary, w(x) = 0.

W(X) = du(x)
the field variable.

A

Represents the variation of

10



APPLICATION OF VARIATIONAL
FORMULATION

lllustrative Example for Variational
Formulation

Consider the elastic deformation of
a tapered - rod under its weight and also due
to applied pull at the free-end, considered

previously.

11



The governing equation Is

LEAw M1+AM =0 im0 <x<L
dx dx

With B.Csi)u(0) = 0
and
At x=l  [eax) M1-p
dx

12



The WR formulation iIs

IW(X){— [EA(X)— ]+ vAKX)} dx =0

where w(x) IS the welghtmg function and
u(x) Is the trial solution. Integrating by
parts and r-arranging, we get

j EA(X) d_)u( (:I—\i/ dx = j v A(X) w(x) dx - w(0) P(0) + w(L) P(L)

l.e. B(u,w) = | (w)

13



since u(0) = 0 (specified), w = du at
X = 0 vanishes

l.e. w(0) =0 P(L) = P - specified
lence P(0) w(0) term vanishes

B(u, w) = j EA(X) du dw dx
dx dx

—

/(w) = | vy AX) w(x)dx + Pw(L)

o

14



Since the bilinear term B Is symmetric Ie.
[B(u,w) = B (w,u)] a quadratic functional I(u)
exists and is given by I(u) = 1/2 B (u, u) - [(u)

I(u) = Ig % EA(X) ddix dx T YA (X) u(x) dx - p o u(L)

0

strain-energy of deformation External work External workdone
by distributed load by concentrated
load

clearly I(u) gives the Total Potential of the
elastic system, which is stationary

au g f y A(C) SU(X) dx - p & u(L)
dx ¢

5 1(U) :o:f EA(X) 2)”(' 5

15



we know that w(x) = ou(x) and threfore

65(99) ::-£L (du) = aw

dx dx dx
" We get
L L
FEAG) L MW = Ty AG) W(X) dx - Pw(L)
0 dX dX 0

B(u,w) = /(w) - the weak form

16



Advantages of the weak form

»Order of the differential equation becomes
half of that in the original equation.

»Hence continuity requirements on the
assumed solution is reduced.

»Lower order polynomial can be assumed
for the approximate solution.

17



»The Natural Boundary condition
becomes embedded in the weak form

»Hence the trial solution needs to satisfy
only the essential boundary condition

18



Ritz Method of Solution
ux) = a, +a,x +a,x* +a,x
Essential boundary condition is u(0) = 0

We get a, = 0 and

u(x) = 23: a; ¢ (X where ¢, (x) = x’

19



The weighting function is w(x) =@ (X) i=1, 2, 3

substituting in the Weak-form of the governing
equation.

This leads us to the equation

3 _ d _
ZaijA(x)c' ¢‘dx:rj i=1,2,3
i1 dx dx

J

where r.= JL' y AX) @ (X) dx +P ¢ (L)

20



on evaluation of the integral within the
brackets, this reduces to the set of
algebraic equations.

_k11 k12 k13_ ral \ (rl \
k21 k22 k23 ) a2 i - ) r2 .
_k31 k32 k33 N La3 ) £
L db. do.
Where ki = [ EA(X) b 99, dx
J 0 dx dx

21



Solution of this matrix equation leads to
determination of the constants a,,a, and
a, there Dby giving the approximate
solution.

u(x) = > a; X
-

22



For the given lllustrative example of a
tapered rod under its weight and also due to

applied pull at the free-end

when =1, | = 1....ky
when =1, ] =2.... Kk
=1 ] =2 K13

and so on

23



j EA(X) dil %ﬁl dx

= E(80-0.2x).1.1dx = 1.5 x10* E

H:
[HEY
[

300

_ dg, dg,
k., = j EAK) - =

= E(80 - 0.2x).1.2x.dx = 3.6x10° E

300
dg, d
k,, = j EA(X) il dqf dx
0

=E(80 - 0.2x).1.3x% dx =8.6 X108 E

24



Similarly
k,, = 3.6x10° E
k,s =2.88 X101 E

Ky, = 2.88 X101E

K,, =1.2 X10° E
Ky, = 8.6 X108 E

Kys = 1.322 X101 E

25



= j ¥ A(X) ¢, dx = j v (80-0.2%) x. dx =1.3773 x 10°
= I y A(X) ¢, dx:j 7 (80-0.2X) .x*.dx = 24 x 10’
ij(x) &, dx = j ¥ (80-0.2x) .x°.dx = 4.598 x 10°

p, = P.¢ (L) =PL =3x10’

p, = P.¢, (L) = PL® = 9x10°

p, =P.¢ (L) =P.L° = 27x10"

15x10*  3.6x10° 9.45x10°| [a,] [1.37 x 10°+3 x 10" |

3.6x10° 1.2x10° 2.88x10" |*|a,|= |24 x10"+9 x 10’

9.45x10° 2.88x10" 1.322x10* | |8 ] |4.598x 10°+27x 10"

26



On solving

a, = 6.6762 x 10°
al = -4.946 x 10°
al, = 6.4736 x 10

U |,_a00= 2, (300) +a, (300)* +a, (300)°= 0.033056 cm

But the Strength of Material Method gives
deflection at the tip as = 0.0378 cm

27



THE FINITE ELEMENT METHOD
or NODAL APPROXIMATION METHOQOD:

» The basic concept behind the Finite
element method is “going from part to
whole”

»Name “FINITE ELEMENT” coined by
Clough

» Fitting of a number of piecewise
continuous polynomials to approximate the
variation of the field variable over the entire
domain

28



STEPS INVOLVED IN THE FINITE ELEMENT
METHOD:

Discretisation of the structure: In this step the
given structure Is divided into subdivisions or
elements. Depending upon the problem we
may choose | D, Il D or IlID elements.

29



| D elements

114 =
&
2

L

1
14 85} U3

» & .

1 2 3
14 A5} Uz Uy

- > » &

1 2 3 4
Wi E}l W2 E}E

L &

2 NODED LINEAR ELEMENT

3 NODED QUADRATIC ELEMENT

4 NODED CUBIC ELEMENT

2 NODED BEAM ELEMENT

30



1 1 2
2

Constant strain triangular element Bilinear Rectangular element

Linear strain triangular element  Eight noded quadratic quadrilateral elemen

Il D elements 31



1 2

Linear Quadrilateral element

32



Tetrahedron: I D elements

— \ / — o N/

-

. P =
linear (4 naﬁe&} quadrartic (10 nodes)

Hexahedron (brick):

linear (8 nodes)

Penta:

[inear (6 nodes) quadratic (15 nodes)

33



Selection of suitable displacement
model:

We make an assumption as to the
variation of the unknown solutions over
the element. In general, the field variable
(example, temperature, displacement etc)
IS assumed to vary linearly or quadratically
or cubically.

34



Displacement model associated with each
element

For n =1 (Linear model)
u(x)=ag+ax

For n = 2 (quadratic model)
w(x) = ag + ax + a,x°

For n = 3 (cubic model)
W(x) = ag+ a;x + a,x° + asx°

35



actual variation of u

quadratic

linear

Field Enstant
variable
u

Length |



Derivation of elemental matrices and
oad vectors:

-rom the assumed displacement model,
the elemental stiffness matrix [K]® and
load vector [P]¢€ of the element are to be
derived using either equilibrium methods
or a suitable variational principle.

37



Assembly of elemental equations to obtain
overall stiffness matrix: the individual element
stiffness matrices and load vectors are to be
assembled in a suitable manner to get the

overall stiffness equation which is expressed
as

[K]{u} ={P}
where [K] Is the assembled stiffness matrix
{u} Is the vector of unknowns or nodal
displacements

{P} Is the vector of nodal forces for the
complete structure

38



Imposition of boundary conditions: The
Boundary conditions could now be
Incorporated to get the reduced equations.

Solutions for the unknown nodal
displacements: The elemental matrices,
on assembly, yield a set of equations,
which could be expressed as a set of
matrices, which could be solved using any
iterative procedure or numerical method.

39



Computation of elemental strains
and stresses: From the unknown
displacements, the element strains
and stresses can be computed by
using the necessary equations of
solid or structural mechanics.

40



L, =10cm
L, =10cm
E= 2x10'N/cm?

EBC:
(2)

A, = 2sg.cm |I>I = 10kN
A, =1sg.cm
10 kN

41



[K] = EA, 1 1
t, 1 1
[KI'= |4x10°> -4x10°
4 x10°> 4x10°
[K]2 = EA, 1 1
L, 1 1
[K]°= |2x10°> -2x10°
—2x10°> 2x10°

|

|

42



The assembled stiffness matrix is given by

[K]e = 108

—4

43



The load vectors are

Y

where R Is the reaction at the fixed end

Pr= 0
(P} = (R
<0 v
10

44



The overall equilibrium equation Is given by

[K] {u} = {P}

or

2 x 10°

2
-2

. 0

-2
3
-1

O\f

-1

1 |

= o 0

Q

45



2x10° 2—2—B—+Fs R
2 3 -1 | U, = ;0L
10 -1 1) tuy’ 10

4 N ~ ( )

2x10° 3 -1 || u, 0

I G S

-1 1 |jug| =|1

o L)

u, =0.25 x 10% cm
U;=0.75x 10 cm

46



Strain for element 1 = €,
= ou/ ox for element 1
= (U, —uy)/ &
=0.25 x 10

Strain for element2 =€,
= ou/ ox for element 2
= U — U,/ &,
=0.50 x 10~

47



The stresses In the elements are given by

Stress inelement1 =0, =€ ,E,
= (0.25x 107) (2 x 10°)
= 5 kN/cm?

Stress in element 2 = o, = € ,E,
= (0.50 x 10) (2 x 107)
= 10 kKN/cm?

48



COMPUTATION OF REACTION AT FIXED END:

2X10°[2*u;—2*Uu,] =R
Substituting for u,and u2 we get
Reaction R= 10kN

49



NODAL APPROXIMATIONS
In general problems arise In

engineering where we seek an approximation
u (X, Yy, z) to some exact function u(x,y, z) to
any desired level of accuracy, I.e.

u(x, y, ) = U (XY, 2)

Many times the approximate function Is
obtained as a series expansion of some
known function with undetermined

coefficients. e.g.

50



a(X) = ZO: a; X (power series)

or u(x) =2, @ cosix +b;sin X) (Trigonometric series)

=1

In these expansions a - s are called the

“generalised coordinates”

o1



u(x;) = U

1= 1,2,.....r. Forcing the
approximations to take on these specified
values at the specified points, we have

d

a,

1=1,2,.....1.

(n x1)

52



Takingr = n. We have
{f|} SN =[P.] L

L N

(nxl) (n x 1)

where the vector of a;s and matrix [P,] are
known

53



There, If [P,]Is non-singular,

and f (x)

a U,
a2 u2
S =[PT 4 ¢
\an) \un)
<1lx x*..x" >[P]" {u}
(1 X n) (nx n) (nx1)
o
u2
— <N, N,...N, > >
\un/
(1x n) 0 x 1)



»The last equation expresses the
approximation in terms of the function values
at selected points, as compared to the
expansion In terms of the generalised
coordinates.

» These selected points are called the
“nodal points® and {f} Is called nodal-
variable vector.

» The functions N.(x) are called the shape
functions.

» Finally u(x)=N,x)u; Is called the Nodal
Approximation. N, — s are also called as
interpolation functions. >



Derivation of Shape function for two
noded element:
1) Letu(x) = a+a,x In 0 <x <|
=<] x>|al
)
uiO) = u, and u(®) = u,

Therefore a, = U,
a, + a,| = u,

(o -{)

In matrix form & 0
I

56



S



-1 e

N,(0)=1. N,(¢)=0
N,(0)=0. N,(¢)=1
N, + N, =1

58




It can be verified that

N; (Xj)

NI

0 % ]
I = ]

= O

1
(Kronecker Delta Function)

N, N, u/ u,
1
\

59



To provide for the possibility of a constant
or uniform field when f is constant at all
points in the domain

We have
. f(x) =C = Z N (X)f = CZ N. (X)

> N (¥ =1
j=1
The above properties are very

iImportant properties of shape
functions.




— 1l X

X = |

61



2)

Let u(x)

Shape functions for
guadratic elements

Taking x; = O X, =

/2 , x5 =1 We have

1
-3/¢

2107

0
012
14

0
4/¢

-4/0?

O (

%4 |
62

- §

0
-1/7

2107 |

62



ux)=<N; N, N3 > J

u3)
N,(X) =1 -3x/t + 2x°/¢?
N, (X) = 4x/t - 4x°[e?
N, (X) =-3/¢ + 2x°/¢?

N,O =1 N @2 =0 N, (¢/) =0
N,(0) =1 N, (¢/2) =0 N,(¢) =0
NO =1 N @2 =0 N @ =0
N, + N, + N, = 1 .



¥

Spatial variation of interpolation
functions for a three-node line elemeant.
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Finite Element Formulation

* In FEA, we use the nodal approximation to
specify the unknown function in terms of its
values at selected ‘nodal points’, through a

Nodal Approximation
u(x) = Zn: N;(x)u; where

N, —s are the "Interpolating™ or "shape" functions
u; —s are the values of 'u’t these nodal points
It i1s seen that the shape functions automatically

satisfy the specified essential boundary conditions
The weighting functions are chosen from the shape

functions; w(x)=N.(x) 1=12,..n o



The governing equation Is

LEAw M1+AM =0 im0 <x<L
dx dx

With B.Csi)u(0) = 0
and
At x=l  [eax) M1-p
dx

66



Weak form is given by

du dw

j EA) - X = j v A(X) W(X) dx + P(L)w(L) - P(0) w(0)
0

Substituting in the weak form

u(x) = N,u, +N,u,

And w(x) as N, first and then N, we get a
system of two equations in two unknowns
namely u, and u,




(K] [u"] =

| T

N;
dx

E - d
G = oo %

J

he
i = [AQON; dx +P,
0

dx

il

68



dN, dN, dx
dx dx

Kip = jEA(X)
= [ E A (-2/1)(-1/1)dx
= EA/I? | dx
= EA/I

69



dN, dN, i
dx dx

i = [EAW

= E A (-1/1)(2/1)dx
= -EA/I2 _[ dx = - EA/I
r )] A[2A+A,

 tv=7L >

6 k2A2 + A,

L2 )

- [E A (-1/I)(1/)dx
= -EA/|I2 _[ dx = - EA/I

70



dN, dN, dx
dx dx

Ky = jEA(X)

=] E A (1/1)(1/1)dx
= EA/I2 | dx

= EAJI

Stiffness matrix for 2 noded element

K:EA[l -1}
| 1 1

71



he
P = [/AN;dx +P,
0

he
e = AN X =, Al
0

he

s = [AN A =, Al

= ya1




A=80cm’

VAP AP AV A

A(X) =A; — (A;-A) X/
le.A(x) = 80 — (80-20)x/300
= (80 — 0.2x)

vy = 0.075 N/cm3
E=2x107 N/cm2

73



If for the entire domain, there are only two
nodal points, they also happen to be the
boundary points x =0andx=Ln=2and || =
1, 2. The above equation reduces to

K]

[
q
N

2 X2 2 X1 2 X1
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Consider the tapered rod problem
vy = 0.075 N/cm3 L =300cm
E =2 x 10’ N/cm?

u, =0 P,.=R
P,=P
N,(X)=1-x/L N,(X) = x /L
le sz — =

1 1
dx E )¢ L

75



A(X) = 80 — 0.2x

300

Ky = [E(80-0.2% (%j dx = 52(80 02x) dx

E 0.2L2
=  —[80L-
L2[ ; ]
_ E _ ¥ E
= E(80-0-1L) ~ 300 6
E
K,, = K = —=
12 21 6
E

A
[
I
|

6 76



KI'= % %1

L
rr= | p(80 - 0.2x) (1-x/L) dx + R
0
=6/5+R

300
= [ p(80-0.2%) (XL) dx+P

0

P

= 450 +10°



Apply the Boundary Condition u; = 0, this
reduces to

KooUp= 15 ,
u,= —= = 0.03cm
K22
This Is the value of a uniform rod
with average area under the pull. This
compares with the Ritz method discussed

earlier with a cubic polynomial which worked
out to

u,= 0.033056 cm
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a, +a,X=u(x)
Linear displacement model

a, +a,X+a,x* =u(x)

guadratic displacement model
a +a,x+a,x’ +ax’ =u(x)

cubic displacement model

79



LECTURE 4



THE FINITE ELEMENT METHOD
or NODAL APPROXIMATION METHOQOD:

» The basic concept behind the Finite
element method is “going from part to whole”

»Name “FINITE ELEMENT” coined by
Clough

» Fitting of a number of piecewise continuous
polynomials to approximate the variation of
the field variable over the entire domain



STEPS INVOLVED IN THE FINITE ELEMENT
METHOD:

» Discretisation of the structure

» Selection of suitable displacement model

> Derivation of elemental matrices and load
vectors

»Assembly of elemental equations to obtain
overall stiffness matrix



STEPS INVOLVED IN THE FINITE ELEMENT
METHOD:...contd

» |mposition of boundary conditions

» Solutions for the unknown nodal
displacements

»Computation of elemental strains and
stresses



L, =10 cm @

L, =10cm
E= 2x10"N/cm?

o 3
A, =2sg.cm l P, = 10kN
A, =1sq.cm
10 kN






u(x) = a; +ayx

U(x) =Ny u; +Nyu,

Here N, s are called Shape functions or
Interpolation functions

Shape functions are used to interpolate
the field variable over the element in
terms of nodal values of the field variable

N, () = 1-x// N,(0)=1. N,(¢)=0
N, () = X/ N,(0)=0. N,(¢)=1

N, + N, =1




It can be verified that

N; (Xj)

N, N, u/ u,
X 1
[% C O ® O

I
-

[
1t

j.
|




To provide for the possibility of a constant
or uniform field when u Is constant at all
points in the domain

We have U(X) =Cc = i Ni (X) ui = Ci Ni (X)
j=1 =
U, =u, =....... =u,=C
. N,c+ N,c=cC
ord N; (¥ =

The above properties are very important
properties of shape functions.

9



* In FEA, we use the nodal approximation to
specify the unknown function in terms of its
values at selected ‘'nodal points’, through a

Nodal Approximation

10



Now let us consider the numerical example
of the tapered beam whose area of cross
section varies uniformly from A, to A, at the
free end and subjected to its own self
weight and a point load at the end.

11



A=80cm’

VAV AP AV A

5
P=10 N

Example

AX) =A; — (A;-A) X/
le.A(x) = 80 — (80-20)x/300
= (80 — 0.2x)

Vo A=20 em’

Specific weight y = 0.075 N/cm3
Young's Modulus E = 2 x 107 N/cm?

12



The governing equation Is

9 EA U1 +A0 =0 in 0 <x<L
dx dx

With B.Csi)u(0) = 0
and du
DAt x=I [EA(X) —] =P
dx

13



Weak form Is given by

0.0 = [ 400 w0 -+ PN - PLO) O

j EA(X)

Substituting In the weak form
u(x) = Nyu; +N,u,

And w(x) as N, first and then N, we get a
system of two equations in two unknowns
namely u;, and u,

14



d(N,u, + N,u,) dN
dx

L dx =

II EA(X)

j y A(X) N, dx+ P(l)w(l) - P(0) w(0)

d(N,u, + N,u,) dN
dx dx

2 dx =

_I[ EA(X)

I y AX) N, dx +P(l)w(l) - P(0) w(0)
-2

15



d(Nl) dN

d(N,) dN

j EA(X)

|
L dxu, + | EA(x 2
dx 1 -([ )~ 4

d(Nl) dN

~dx u, =
X

j y A(X) N, dx+ P(l)w(l) - P(0) w(0)

d(N,) dN

j EA(X)

dx

I
2 dxu, + | EA(X 2dx u, =
1 j ()= B rdx

j y AX) N, dx + P(l)w(l) - P(0) w(0)

0

16



IK“ | ] | - |
/ /
I EA(x )d(N) - odxa, + I EA(x )d(\ g I, dx u, =
A dx dx O dx dx
/
[ 7 AGON, dx+P(1)w(1)-P(0) W(0)
0
K Kzz
| | | | |
JEi( )d(N ) I, dxu, + jE4( )d(\ ) AN, dx u, =
dx dx dx dx

j y A(X)N, dx +P(7 )w(1)-P(0) w(0)
0

17



These 2 equations can be written in matrix form as

Kll
K21

K12
K22

9

K] {uef =

Where

18



We know that the shape functions for a

two noded element are given by

N, =1- 7 N, =

dN, 1 dN, _
dx | dx

X
1
1
|

19



20



21



j EA(X) dN sz dx

dx
Ij E {Al A
0

=) (] e

_ EA LAy EA+A)
I 2 2 =
A
Therefore the element stiffness matrix will be
e1 _ EA +A, 1 -1
[K*] = | 2 -1 1

22



I
= [ AN, dx
0

Similarly the element nodal load vector will be

23



Therefore the assembled load vector will be

fre) = A2 4
6|24, + 4,

Case - |. Discretize the Tapered Bar into 3
elements.
he length of each element '|' = 100 cm.

24



A=80cm’

Py P,
|

X X
=300 cm |

Vo A=20 em’

10 N

25



Kl_ E A1+A2
, 2

KZ_ E A2+A3
|, 2

K3_ E A3+A4

70
— 70

50
—50

30
—30

—~ 70
70

—50
50

—30
30

26



The global stiffness matrix will become

K[Kl] )
K] = 4 [K?] >
[K°]
o -70 ]
_E 70 70450  -50
100 50 50430 -30°
i : 307 30
(70 -70 0 0
_E |-70 120 -5 0
100 0 -50 80 -30
0 0 30 30




¥ X100 <

28



Similarly the assembled global load vector
will become

Rl = { L+ p

29



The global load vector Is

(220

6
R] = 200 _ 160
» X100 - 6 6

140 100
_|_

6

(220

360

y X 100 <

240

\80)

6
80

6

30



Now the total system of ec

~———=70 by

E |- 120 -50 u,
100 50 80 -30[ | u,
-30 30| | u,

Now applying the Boundary conditions i.e. u; =0 ..

(220 {R]
_ 7 x100 | 360] |O
B 6 240 O
L 80 J \P)

uation will be

Delete the first row and first column of elements and
the system of equation will reduce to

-

-

120
-50

-50
80
30

-30
30

N

(

J

>:

7/X100<

6

(360

240 ¢
80

J

«U O O




The data are E =2 x 10" N/cm?y = 0.075 N/cc
and P =1 x 10° N.
On solving the above equation we get

u, = 0.035501997 cm
u, = 0.018818567 cm
u, = 0.008778557 cm

The deflection at mid section of the bar by
interpolation Is
u, +u,

U _, = > = 0.01379856 cm




Example 2 Let us consider the discretization
with 2 elements

h=150cm
The assembled stiffness matrix will be

E

Kl = 15

65
—65

- 65
65+ 35

-35 35

Similarly the assembled load vector will be

[R] = px150-

210
6

180
—_— 4

6

N

(R

4+ < O

33



After applying the B.Cs the global system of
equation will become

150

On solving the above set of simultaneous
eguations we get

100

-35

-35

35

9

u,

U3

> = pXx150 A

6
80

6

f@\

;

4

ro\

P

&

u; =0.033068406 cm (Tip displacement)

u, =0.011607692 cm (Mid section

displacement)

34



e _EA+A 1 -1
[K] ] 122 -1 1

For a bar of constant cross section A;= A,
e EA
K] =T

1
S

35



Example 3

2AE

p AE

O

()

[ SEW

oy

36



Element 1.

U,
Al 1
K - 2FA
L [-1
Element 2.
U,
EA| 1
k, =—
- L -1

37



y 2 =2 0 l[u) [F]
£4 -2 3 —1Ru,t=<F
L o ] .

0 -1 1 ]lu]

L i B -

Il
i

Load and boundary conditions (BC) are,
u, =u, =0, F, =P

FE equation becomes,

"2 -2 07(0) (F
bzl -2 3 —1Ru,;=4P;
0 =T TR0 LA,

Deleting the 1% row and column, and the 3** row and columr
we obtain,



3} = (P
Thus,

 PL
> 3EA
Stress 1 element 1 1s

U

U, — U,

L

o,=Fke = E

) E( PL _0)
- L\3FEA4 34

39



Similarly, stress in element 2 1s

G. = Ee. = EH‘%_HE

: ’ L
_E(O_PL]__P
L\ 3EA) 34

which indicates that bar 2 1s 1 compression.

40



—>
/ /
O ON
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WEAK FORM OF GOVERNING
EQUATION FOR THERMAL
PROBLEMS

42



I T

hpdx(T - i; )

(q+dq)

43



where

k = Thermal conductivity coefficient

h = Thermal convection coefficient

A = Area of cross section subjected to
CONDUCTION

p= Perimeter is the area exposed to
CONVECTION

T, = Atmospheric Temp., T = Variable

Q = Heat Source

44



(+dgq)—g+hpdx(T-T,_)=0
+by dx we get
dg +hp(T-T_)=0
dx
o(kA(x)cT) + hp(T - Teo) =0

aX ax

45



Boundary conditions:
) Atx=0T =T,

) At the free end any one of the following
three possible boundary conditions could
be specified

1. If free end is insulated kKA dT/dx =0
2. If free end Is open to atmosphere

_ kA dT/dx|;; = hA(T-T,)
3. Specified temperature T(l) =T,

46



he governing equation for heat transfer in

a one dimensional problem is given by

d

dx

KA

dT

dx

| hp(T —Too) — O

The weak form can be obtained by

j w(x)R(x)dx =0

For a bar of length ‘I’ with wall temperature ‘T’
the weak form of the governing equation

becomes

a7



d { KAd—T}+hp(T —Tx) |dx =0
dx dx

| w(x)

!w(x)%[ ‘;Hdm jw(x)hp(T T.)dx =0

> 1

|
Lt = fwin d { KAd—T}dx
) dx

and  u=w(x) du = dw

dv = d { KAd—T}d v:—KAd—T
dx dx dx

48



Substituting the above term in equation 1,

I1=uv—jvdu

|1= W(X){

we get

w(x)

_ KAd_T

dx |

dT

_KA—

a8

X

- KA

dT

J

0

d

-

dT

W
dx +

ax

dx

dx | d

j W(X)hp(T = T.o)dx = 0

0

49



hpw(X)Tedx =0

W(x)| — KAz—I +£KAd—Td—de+£hpw( X)T ( )dx—!

N y g VRN y
NG ~ ~ NG

Boundary term B,(T,w) B,(T,w) [(w)

j KAd— i dx + j hpw(x)T (X)dx =

0 X OX 0

dT dw | JI' hpw(X)Tdx — w(X) [hA(TL —~ Too)]

50



Substituting In the weak form
T(x) =N;T; +N,T,

And w(x) as N, first and then N, we get a
system of two equations in two unknowns
namely T, and T, which can be written as

51



K11 K12
K21 K22
Where

cond

-+

q;

e

cond

'Jconv

-]
"]

P<f[2 r_ri R ) F(11 A
b= <
K2, \TZ, 4,
KA(X L dx
() o
hp(x) N;N;dx

= jhpToondx
0

52




Let the elements be of equal length

The element matrices are

[K*]

[F°]

_@{1

-1
hPIT,

2

1
+
1}

i

hP1 [2
6 |1

!

d

0

"

53



lcm

an
k =3Wem°C h =01 H’Z"fﬂf D(T
I=8cm = fcm —
® o & o o
7 2 3 4 5

54



Boundary conditions:
at x = 0, TO)=T

|_,—KAOI—T \,: hA (T, -T,)
dx

at X
conduction = convection loss

For a typical linear element
N, = 1-x/)
N, = /)

55



Let the elements be of equal length | = 2 cm

The element matrices are

KA

[K*] = T

-+

hp |

6

3

56



The element matrices for ELEMENT (1),

(2) & (3) are

[Ke]cond —

[I<e ]COHV

[K*]

therm

0667 0333°
10333 0667

1 6.666 -5.667

, 10,

5667 6666

(

}=-

.

; {0} =5

; {0} = <

20
20

D

p

20

20

f20\

20

57



The element matrix for ELEMENT (4) Is

6 6
Kooy =
[ ]cond _6 6_
0667
[Ke]COHV:
20) (0
@.3= 1500 g
 6.666
K erm =
[ ]therm _-5667

- 0333] [0 O
-0333 0667 |0 04

5667
, {0, )=+

7066

20
28

58




On assembly we get

-5.667 0 0 0
13.33 -5.667 0 0
-5.667 13.33  -5.667 0
0 -5.667 13.33 -5.667
0 0 -2.667  7.066 |

(T1

T2
T3
T4

=

20+ 20
20+ 20
20+ 20

28

59
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By applying Boundary condition at

atx = 0T =T, = 80°

1333 -5.667 0

5667  13.33 -5.667
0 -5.667  13.33

0 0  -5.667

By solving we get
T, =5395° C;

T, =3282°C;

0
0
-5.667

7.066

(T2) (40 + 5.667 *80)
T3 40
T4 40
| T5] 28
T, = 39.88° C;
T, = 3029° C;

60




I=5cm

~ @
| ]

Boundary condition: Free end insulated

61



h =10 W/cm2°C
K =70 W /cm °C

o = 140°C
. =40°C
! =5cm
Radius r =1cm
Area A =TTr2= 1 cm2

Perimeterp= 2nir=2m

62



LECTURE 5

]



We have seen so far the application of
the two noded linear element to the
following applications

» Structural problems
» |ID heat transfer through fins

N, (0)=1. N,(£)=0
N,(0)=0. N,(0)=1

N, + N, =1



Structural problems
The governing equation Is

IEA M1+A0 =0  in 0 <x<|
dx dx
With B.Cs i) u(0) = 0

and du
iAt x=1 [EAKX) d_x] =P



Weak form Is given by

j EA) ay d";’ dx = f ¥ A(X) W(X) dx + P(LW(L) - P(0) w(0)

0

[K] EA +A, 1 -1

{re} = £<2AI+A2>
6 |24, + 4,




For a bar of constant cross section A,= A,

K] -

e — ]/AI 1
Ay
{r } 1




ID heat transfer through fins

d dT
KA Fhp(T —=Tx) =0
dx | dx P )
j KAd—Td—de+ j hpw(x)T (X)dx =
d X dx 9

j hpw(X)Tcx — w(X)[hA(TL = T--)]

0



The element matrices are

. ka1 4 hpl [2
1=l




LONGITUDINAL VIBRATION
What is vibration?
What is natural frequency?

What is meant by degree of freedom of a
vibrating body?

What is free vibration?

What i1s forced vibration?



? k
Unloaded position Staficequilibrivm posifion

LS

Stafic deflecfion W

Deflected posifion




3

iy

b




4
b
(, #

Na

.‘|



Free undamped vibration

' ' — I
dn/m, 6o,

12



Free damped vibration

e
\/ \/zn \/31",, V4n,

Td’ zﬂfﬁ}ﬂ

"

13



200

Effects of damping

Response < %
—
o
o
I

¢ = 1.0 (Critically damped)
£ =1.5 (Overdamped)

(Under damped)

Steady-state

Time

14



Longitudinal Vibrations of Elastic Rod:

..0A(X) — (o+do) A(X) + I.LF. =0 --- -2(1)
le., dcA(X) - IF =0

We know that IF is given by product of mass
and acceleration.

Acceleration = d?u

2
d t c A(x) 2
l]\ PA(x) dx 2

P E

| T &t
AN < i\_lv_/

(c +do) A(x)

15



IF =m x a= (p.A(Xx)dx) d?u/ dt?
=pA(X) dx.U

Substituting In equation (1) we get
doA(X) — pA(X) dx. U =0
or
doA(X) - pA(X) U =0

dx
Now ¢ = E€ = E du/dx



~d EAX)du - pA(x) il =0 - > (2)
dx dx

Assume that the displacement u Is given by a
harmonic function namely
u==Usin ot
Velocity =0 =du =U o, coS ot
dt
Acceleration G = d?u =- U ®,? sin ot
dt?
T-Um2 ->(3)



dEAX)du) +p.Auw, =0 (4)
dx dx

For a bar fixed at one end the Boundary
conditions are
) u(0) =0
) EA(X) du at x=I=0
dx



- pPA(X)uw,® =0

- pPA(X)u@ *)v(X)dx =0



I
u-dv o [ pAGUX) V) dx,”
X 0

- j EAKX) —

+ P(v(I) - P(0)v(0) =0

P(l) =0 and v(0) =0 ... Weak form becomes

a d\)i dx — II,oA(x)u(x) v(X) dxew ° =0

0

j EAKX) —



|
J‘ EA(X) du dv
dx dx

dx — Ij o AX)U(X) V(X) dxw,> =0

0

Substituting Iin the weak form
u(x) = Nyu; +N,u,

And v(x) as N, first and then N, we get a
system of two equations in two unknowns
namely u, and u, which can be written as



K12 T Mll MlZ (11 )

K2 u, | M, My | u, |

| ~ dN,
Ke = jEA(x) LAY
A dx dx

I
Mi = [ pA(X)N;Ndx
0






K11 K12 Mll |\/|12 , ful\
— W T +=0
Ka Ky M, My, | U,

Here w, represents the natural frequency or
eigen value and the vector of unknown
displacements represents the eigen vector
associated with each eigen value



K11 K12 M11 M12 (11 )
K21 K22 le Mzz )

K-Ma,’| -

k2)

Since {u} which represents the vector of
nodal displacements, Is not zero {Ul} )
-+
2

‘K—I\/Ia)n2 =0

Which gives a quadratic in A, where A= w,?
Solving for A we get the eigen values

u




Substituting w,? in the above eqn we get
the vector of unknown displacements



Example - 1 Longitudinal Vibrations of Elastic
Road

e I
T

Consider a bar of cross —
sectional area A and length
' fixed at one end anc ]
subjected to longitudina
vibration. We can mode
the bar using one two
noded linear element.

=0
1

LT
2

27



Governing equation Is

4 1gadY . w.’pAu=0
dx dx |

The stiffness & mass matrices are
respectively given by

MERLD MeRES



The equilibrium equation is given by

@q-4M]mﬁ<’

mFAU:
|

Gl

or

U,

i

U, |=

>

-

pt?
6E

6

0

pr q&%
1 2]

2 1} w2,

1 2




As u, = 0 the above equation reduces to
[1 ﬂ : pzz [2 1})2 [u,l=
| Uz

Asu,#70 1-— plfzooz =0

-W [ 1732 E

Jo,




Example 2: Now we shall see the effect of a
concentrated mass “M” at the end of the bar

STV

M]=pAL(2 1)+ (0 0
s 1z om

.
[M] = pAL |2
6 |1

oAl .



Applying the Boundary condition that u, =0
we get

1_Iﬂmzn'ﬂX6_M 002”:0
3E 6 pAl
or
®2, [pA[Z + M} =1
3E
1

AN O

pAL?2+ M
SE



Example 3: Consider the same bar fixed at one
end and subjected to longitudinal vibration.
Divide the bar into two elements of length |

I =
;0

33



Elemental matrices are given by

KP' = e = A ]
L

[M]* = [M]?

|

-
>
I_
E—
N



Global matrices are

1 -1 0
Kl = A1 2 4
L
0 -1 1
" 2 1 0
Ml = 21 4 o) =
12
L 1 2_

The equation is [K] {u} -a[M] {u}=0




The boundary condition is u;=0 The reduced
equation is

2-4a) (l-a)| _ 0
-1- ) (1 -2a)
L* p
when a= W, °
24 E
The natural frequencies are  ®, = 2-33\/End
L \Vp




Example 4:- Determine the natural
frequencies of longitudinal vibration of the
unconstrained stepped bar shown in Fig.

A, =2A E p

ﬂ.2=ﬂ.

L
ro & o

37



The Stiffness & mass matrices of the two
elements are given by

K]t = AE, [1 -1 J:4AE[1 -1}
g, L1 1 | 11

Lo1-1 1 | (-1 1

[K]Z:Aliz2 [1 -1} = 2AE[1 -1}

24,172 4,172

‘3

UE
& # L
2 3



M = AL, [2 g = pAl [2 1}
6 1 6 1 2

[M]?= pA[ [2 1) = pAI [2 1}
1 2
The assembled stlffness & mass matrices are
given by
2 -2 0
K] =2AE (-2 3 -1
| (0 -1 1)




(4 2 0O
IM]o= pAl |2 6 1

12 \0 1 2
The bar Is unconstrained So the boundary

conditions involve only specification of forces at
the ends of the bar I.e.
EA du
dx =O0atx=0&x=1
The frequency equation can now be written as
2 -2 0 4 2 0
2AE | -2 3 -1/ - o’ pAl|2 6 1 |[=0

Lo -1 1 1210 1 2




Dividing throughout by 2AE & defining pl? w2, as A

I 24E
We get
2(1—-2\N) -2(1+AN) 0
-2 (1 +A) 3(1—-2N) -(1+A) =0
0 - (1 +A) (1 — 2A)

The evaluation of the determinant yields

18 A (1= 2A) (\-2) =0



The roots of the above equation gives the
natural frequencies of the bar as
A=0 oro,= 0] Rigid Body Displacement]

AN="% orw,= 3.46 /[E} [ First Natural Frequency]
1 | P

A=2 or o,=6.92 [E} [Second Natural Frequency]
2 | 0



The first frequency o,, = 0, corresponds to
the condition where all parts of the bar are

subjected to equal displacements and
hence It IS unstressed. It represents rigid
body mode shape for which the eigen
vector is givenby 1
<1 \
1]




The 2" and 3 frequencies correspond to
elastic deformation modes and to determine
the mode shape corresponding to these 2
frequencies we solve for the equations

[K o M(Dzn] {U} =0

after substituting for v, as o, or o,
1 2



For o, = o, ,we get
1

-

=10,

-1

The mode shape is given by




For o, = o, we get
2

e

up= -1

1)

The mode shape is given by

46



LAGRANGIAN INTERPOLATION FUNCTIONS

The Lagrange Interpolation polynomials
associated with node ‘i’ of an nt" order element
IS given by,

(X=X1) (X=X3) - (X=Xi1 ) (XX q) oo (X=X0)

L; (X) =

n o (x=x)
or L .(x)=11 (x~—x)

(=1
Lz k




It is seen that L , (X) is an nt"degree polynomial
given by the product of n linear factors. It can
also be seen that If x = x,, the numerator
becomes equal to the denominator and L,(x) will
have a value unity.

On the other hand, if x = x; and i # k the
numerator & hence L, (x) will become Zero,

ie., Li(x) :{11 ifi = k

0/ ifi#k
Where X ; denotes the x co-ordinate of the ith
node In the element.



Linear Element:

We shall derive the shape functions for a two
noded Ilinear element using Lagrangian
polynomials.

1 Z
X =0 X, =f




L, (X) = X=X,
Substituting X, = 0 & X, ={ we get

which are the same as that obtained by
Inverting the generalized co-efficient matrix



Quadratic Element:

L,(X) = (X=X5)(X=Xs)
(X1—X3) (X1—X3)

W @ X

=(x—=142) (x-f)

=2

(-42) (-4)
2_vp 402
£2/2
- 3x +1

X2
2

51



(X)X (x=0) (x~4)
Lo(X) = (X,Xy) (kp=Xa) = (U2-0) (U2-1)

= 4x - 4x?
| |2
(x=X) (%) (x-0)(x—4/2)
L3(X) = =
(X3=X1) (X3—X;) (t=0) (t-t/2)

= 2X%2 - X

|2 I



where

N1(x) =2x2—-3x +1
|2 I
N2(X) =4x - 4x?
I |2
N3(x) =2x* - X
|2 I

Spatial variation of interpolation
functions for a three-node line element.

53



Cubic Element:

= l _ 21
o & &
1 2 3

(X=X5) (X—X3) (X—X,)
L,(X) =

(X1—X3) (X1=X3) (X1—X,)

(1-3x/?) (1-3x/2f) (1—x/t)

-r.z..lnk



(X—X1) (X—X3) (X—X,)

L,(X) =
(Xo=X1) (Xo=X3) (X—X,4)
= Ox/ (1-3x/20) (1—x/t)
(X—=X1) (X=X5) (X=X4)
L3(X) =

(X3=X1) (X3—X3) (X3—X,)

= -9/2 xt (1-3x/) (1—x/)



(X—X1) (X=X5) (X—X3)

L,(X) =
(X4=X1) (X4=X5) (X4—X3)

= X (1=3x/) (1-3x/21)

Thus the Lagrangian Polynomials
provide us with a quick and easy method of
deriving the Shape Functions. It will later be
used to derive the shape functions for ID and
2D rectangular elements using Natural Co-
ordinates.



N,(xX) = (1-3x/1) (1-3x/2f) (1—x/t)
NL(x) = 9/ (1-3x/28) (1—x/1)
N.(x) = -9/2 x/# (1-3x/) (1—x/t)
N,x) = xM (1-3x/1) (1-3x/2t)
‘

i | 1 i ] i 1 1 i
0 01 02 0.3 04 0.5 0.6 0.7 0.8 09 1
x



di[EA<x) Uy AR =0
X dx

d <A dT
dx | dx
dfgpdu
dx dx

| hp(T —Too) — O

+ ,oA(X)ua)n2 =0



BEAM ELEMENTS

N i, il

e
A {
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Beams in Bending

« Consider a beam in bending as shown:

412001 |

A

Considering an elemental length of the beam

W\“WDQM

Q




Beam in Bending-Continued

e Considering the equilibrium of vertical forces and
moments, we have the governing equation:

d

Qg0 =0

dXx

dM d*M

< Q 32 q(x)
2

M=—EI2 Y and finally
dXx

d =~ d “w
dxz[EI dxzj a(x) =0



Governing Differential Equation

o d “w(x)

dx”
Boundary

=q(x);  qis the distri

conditions

cou

outed loading

d INnvolve

specification of any of the following variables
w = transverse displacement

0 = dw = Slope
dx
2
M= EI d \;V = Moment
dx
3
Q= El d \;V = Shearforce

dx



Boundary conditions

~

w = transverse displacement .
> Primary
@:d_W — Slope variables
dx )
2
M= E19Y _ Moment
dx Secondary
d3w ~  variables
Q = El— = Shearforce
dx Y




Possible loads

Distributed load (uniform or non-uniform),
Transverse loads, Transverse moments or
combination loading In transverse direction

transverse load Moment
ud| l
bbb

f;% — L r}%7




Shape functions for beam element
ELI

1 2
O @

w
Y1 91 2 92

Sign conventions %

b

QT

2
1 2
O @

66



w (X)=a, +a,Xx+a,x* +a,x> = (1)

w (X) =<1 x X°

X

3

> 3

e A

Ay
A

N

a
Gy

> = (2)

0 (x)=a, +2a,x +3a,x>° = (3)

0 (X)=<0 X 2x 3x° >+

(

Ao
A

N

a
a3

\

- —=> (4)

J



At x=0 w=w, and 6= 0,
At x=I w=w, and 0= 0,

at x=0 w, =a,+a,0+a,0+a,0
6, =0+a, +2a,0+3a,0

2 3
X =1 w, =a,+al +a,l° +a,l

0, =0+a, +2a,l +3a,l°



o o «»

o O . - M

) ™M

— 2I

© O L T OO|2

© A - O - —
— —

_O 0_1_01_0




w (X)) =<1 x x°

W(X) =< N,

X

N,

>

0 O
1 O

I b
1 2l
N, >«

> =

=

N
N






N 3 -~ N
stope=0 4 slope=1
/ / N\

O

N, & N, associated with displacement

N, & N, associated with slopes
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Ritz Weak Formulation

I

j {EI d ;WEX) — q(x)}v(x)dx —0 V(x)=Is the weighting function
X

0

j £y 4W§X) v(x)dx —jq(x)v(x)dx -0
0 dX 0

Integration by parts,

d* d°
u=v(x); dv=El d")‘(’SX) v=El dVZS,X)

_ L -
V(X)E] d°w —IEI d wdv
dx®

- j g(x)v(x)dx =0



dv d v

Nowu:d—x, anddu:d7
3 2
dv:EIdW, and v = Eld\év
dx’ dx
d*w] [dv_ d?w] d? Wd v
{v(x)El ™~ l {dx Bl } jEl r dx — jq(x)v(x)dx 0

Rearranging,

d?w d?v ' av _ d’w] diw]
El dx: X)V(X)dx + — | V(X)EI
[0 G o= atsvoonn | e G| vooer G




d2w d?v ' dv _ d2w] diw ]|
j El dx = ! q(x)v(x)dx{dx — } —{V(X)EI dx?’}

0 d i d i 0 0
d w d2v ' dv _ d2w] diw ]|

j ——dx = j q(x)v(x)dx + :

- dx® dx g dx  dx? ) dx” |,

— < S

Slope Moment Shear force

Displacement



J‘Eld Wd V
dx* dx?

I\/|(|)9(|) I\/I(O)H(O) Q(Hw(l) —Q(0)w(0)

~0X = jq(x)v(x)dx +

Strain Energy = Work Done by UDL + Work
done by moment + Work done by shear force



LECTURE 6

]



BEAM ELEMENTS







Beams in Bending

« Consider a beam In bending as shown:

point loads
udl l l
884244

g U




Considering an elemental length of the beam

q(x)

|y

4

dx

L

M+diV

Q+dQ

* Considering the equilibrium of vertical forces
and moments, we have the governing

equation:



Fg(x) =0
d>M
= Q; E: FqQ(x) =0
2
— _ElI ‘ix‘;" and finally

d “w
[EI oV j—q(x) =0



Governing Differential Equation

4

£r dwfx) —q(x):  q(x) is the distributed loading
X

Boundary conditions could Involve

specification of any of the following variables
w =transverse displacement

0 = aw _ Slope
dx
2
M= EISY _ Moment
dx
3
Q=El d \;v = Shearforce
dx



Boundary conditions

w = transverse displacement

0 = aw - _ Slope
dx
2
M= E19Y _ Moment
dx
3
Q= El d’w = Shearforce

dx’

\

\

Primary
variables

J

Secondary
~ variables




Possible loads

Distributed load (uniform or non-uniform),
Transverse loads, Transverse moments or
combination loading In transverse direction

transverse load Moment
ud| l
bbb

f;% — L r}%7




Shape functions for beam element

E\LI

1
O
wf .{-?1

Sign conventions W,

10



w (X)=a, +a,Xx+a,x* +a,x> = (1)

w (X) =<1 x X°

X

3

> 3

(

Ay
A

N

a
a

L3

\

J

> = (2)

0 (x)=a, +2a,x +3a,x>° = (3)

0 X)=<0 1 2x 3x° >+

-

Ay

1

N

a
a
a

L3

\

- = (4)

)



At x=0 w=w, and 6= 0,

At x=I w=w, and 6= 6,

at x=0 w, =a,+a,0+a,0+a,0
0, =0+a, +2a,0+3a,0

X = w, =a, +a,l +a,l’+a,l’

0, =0+a, +2a,l +3a,l’



o AN o™
© S <
_ Y4
O O . T

QP
o O L

O O .
™

N

O O L I
O «d _ -
—~ O «d O




w (X) =<1 x Xx°

W(X) =< N,

X

N

>

> =

=

N



Beams belong to the class of Hermitian
polynomials



siope=0
‘,,.Ei{::pe:1

N

E " 4 slope=1
siope=
/ / N\

~

N, & N; associated with displacements
N, & N, associated with slopes

16



Ritz Weak Formulation

I

j {EI d ;WEX) — q(x)}v(x)dx —0 V(x)=Is the weighting function
X

0

j £y 4W§X) v(x)dx —jq(x)v(x)dx -0
0 dX 0

Integration by parts,

d* d°
u=v(x); dv=El d")‘(’SX) v=El dVZS,X)

_ L -
V(X)E] d°w —IEI d wdv
dx®

- j g(x)v(x)dx =0



dv d 2V

Nowu:d—x, anddu:OI7
3 2
dVZE|dW, and v = E|d\;\’
dx’ dx
d*w] [av_ d*w] dwdv
{ dx’ L le dx? } IE' 2 42 ax — jQ(X)V(x)dx 0

Rearranging,

d®wd?v, | dv _ d?w] d3w
El dx = | g(x)v(x)dx + — | v(X)EI
.(!: dx 2 dx 2 _([q( ) () |:dx dX i|0 |:() dx3j|o




d?w d?v ' dv _ d’w] diw ]
El dx = X)V(X)dx + — | V(X)EI
! dx® dx? QQ()() {dx dx} {() dx"’}

d?w d?v | dv _ d?w |
El dx = XIV(x)dx +
-([ dx* dx’ !q()() dx  dx* |

SRt =S

Slope Moment Shear force

— v(x)EI

Displacement




2 2
jEId\;Vd;/
dx“ dx

dx = JL q(x)v(x)dx +

0
MDa(l) - M (0)8(0) - Q(1)w(l) — Q(0)w(0)

Strain Energy = Work Done by UDL +
Work done by moment +
Work done by shear force




»From the quadratic functional we see that
specification of w and dw/dx= 0 constitutes
the essential boundary conditions.

»Specification of Q and M constitutes the
natural boundary conditions

»Since a quadratic functional exists
minimizing it will lead to the equilibrium
equations In either the direct form or In the
variational (weak) form



Substituting for w(x) and v(x) as

-

given below W,

6’1
W(X)=<N; N, N, N,>5 "¢

2

W
0;
le

w(X) = N,w, + N8, + N,w, + N6,
and

v(X)=N,,N,,N;,N,



Substituting for the displacement in the weak
form of the equation, and taking the weighting
functions as the shape functions, we get a
system of 4 equations in 4 unknowns.



K Juj={f}
N :I!EI ddle\zli dc:xNz

f, = _I"q(x)N i(x)dx

where{u } = -

o =

o =




Stiffness Matrix for beam element

d’N.
K—jEIdI\Zl ! dx
dx® dx*










|
= | El 2 dx
. -([ dx?  dx’
(6 12x ¥ 4 6
- /& BT |
0\ J\ 2 )

dx



g

| h
6 12X 6 12X

fel-0- 22

0\ J
:—12%2 K31

6El
K14 _|—2— K41

4EI| oEl

K22 = — K23 —






12 6l -12
6l 41° —ol

StiffnessMatrix|[K [ = E—3I
°|1-12 -6l 12

6l 21° -6l

Now the load vector Is given by

f, = jq(x)N i(x)dx

6l
21°
— ol
41°




= [ qeON,(x)dx = | q(x)[ (

_ql”
12

3x°

|2

| | 2%
= j qO)ON,(x)dx = j q(x)[x—( |

M

2X

|3

e



fy = [ AOON,(x)dx = | q(x)(ﬁxz
_d
2

f, = [ a0ON,G0dx = | q(x)[x—(

_a’

12




Load Vector Is given by

-

1
| /6
1

—1/6

o




Hence the element stiffness and load vector
for the beam element are given by

12 ol -12 Ol
- . . EIl 6l 4% -6l 27
StiffnessMatrix|K | - —

°|-12 -6l 12 —6l

6l 21 -6l 41°

== 4 <




Beam Element

For a classical beam element,

w(x)=(N; N, N; N,)3

d’N,

d°N,

E =

XX — L—
dx dx\ dx dx*

du d( dwj d 2w <d2N1 d2N,

dx®

dx?




Example 1: Cantilever Beam subjected to
point load at the tip

P

E L1
2z
O
w
1 91 2 92

Boundary conditions for this beam are

At x=0 w;,=0and6,=0

At x={ Eld®w=PandEld®w=M=0
dx3 dx?



The Equilibrium Equation Is glven by
El M2 6L -12 6L w)
13 |6L 4L -6l 22 04 |=

12 -6L 12[ —-6L w -P
6L 212 - a2 9) |
Imposing the essential Boundary conditions we

can strike off columns 1 & 2 & Rows 1 & 2
which leaves us with

El (12 -GLJ W, :{-P}
-6L 4L2 |6 O




Which gives the equations.

R

-6El w, +4El 6,=0

L2 L
Solving for 0, & w, we get
6,=PL°
2E|

and w, = PL3
3El



Example 2: Simply supported beam with

uniformly distributed load

thrbtit thtb b

A

L

:'?é?

WTH w9

1 2 3

The above beam can be idealized by using one
The entire beam need not be

element.
modeled.

Instead,

taking advantage of

symmetry we can model one half of the beam



The boundary conditions in this case are
At x=0 w,=0andEl d*w =0
dx?
At x=t B, =0andEld°w =0
dx?
The stiffness matrix is given by

12 6l 12 6l (w (1
EI| 6l 47 -6l 276 | fi] 16|,
— < = —X <
°|-12 -6l 12 —s6lllw,|[ 2] 1

W
6l 212 -6l 4%|l6,] |-1/6

< O O O




Where R Is the reaction at left end and M Is the
moment at mid section.

The reduced stiffness matrix after imposing
Boundary conditions are given by

_ Al AL 1 ) ‘R
7 /6 0

J 1>:ﬂ< < b
W, 2| 1 0

i v, _I/G, \M,

— 3 P = >+ 7




AEIO, — 6Elw, = fi2

{ {2 12
- 6EIO; +12Elw, = ft
2 {3 2
8EI6;, -12Elw, =f
{2 {3 6
3
g -t
3E|
5f °
Wl =

 24E|



Substitute £ = L/2

o _ Al :
We get YT
5fL °
W, =

 384El



Example 3: Fixed — Fixed beam with central
load P

V

OO
NN

L/2 l L/2

The above beam can be modeled taking

advantage of symmetry as a single element
- O

WT a WE fi

Boundary conditions: at x = E, w,=0&6,=0
Atx=1{0,=0and Eldw =-P

dx3 2



Deleting 1st, 2"d and 4™ rows and columns of
the stiffness matrix the equilibrium equation
IS given by
12 Elw, = -P

{3 2
orw,=-P [

2 12 El

= P£ (down wards)

24 El

Substituting £ = L/2 we get
w, = PL3
192 El




EXAMPLE 4: The beam shown In fig Is fixed at
both ends and supported between the ends
with a simple support that allows rotation.
Compute the rotation and reaction at the
supports. Also determine the moments and

shear forces.

/f
/J A A e i A A i §
% Z
/ S 4
L 2L



The given beam can be discretized into
two elements as shown below

The stiffness matrix & equations are
given by



Element 1

(12 6L —12 6L [w, 1
El 6L 4.2 —6L 22| |8, =ft L6
P 12 -6L 12 —6L | W, 2 |1
\GL 2L2 - 6L 4L2/ 0, -L/6
Element 2
12 6(2L) -12  6(2L) [w,] b
El | 6(2L) 4(2L)? -6(2L) 2(2L)2| |6, =0
208 12 -6(2L) 12 —6@2L) | w, [ o
6(2L) 2(2L)2 -6(2L) 4(2L)2) le,] |0




The global stiffness matrix is a (6 X 6) matrix.
Boundary conditions are

W, =W,=w;=0,=06;=0

The global equations now reduces to one
equation and one unknown, 0 , [Remove 1%,
2nd 3rd 5t & 6" rows & columns].

El (4L*+2L°) 6, =1L*
L3 12
or
6,= fL°

72 El



Now to compute reactions and moments for
each span we utilize the local stiffness matrix
for that span. Let the reactions and moments

for the span 1-2 be R,, M, R, and M.,.

12 6L -12 eL)(0 | [1] IR,

El | 6L 4L2 -6L 2L2| |0 |=fL/L/6| + M,
L3 |-12 6L 12 6L |<O0 + 2|1 R,
6L 212 -6L 4L2 | |fL3 el (M,

o _/

'~
N
[T

\ —



Solving we get

Ry =7fL; M, =fL?; RY, = 5fL [ M, = - WL?
12 9 12 36

R, represents the reaction at node 2 which Is
the sum of shear forces at 2" node of element
(1) and that at the 1St node of element (2).
Thus R, = R%, + R4,

"he stlffness matrlx for element (2) can be
used to compute R?,, M,, R; and M.




El
8L3

Solvingwe get R, =fL Ry

R

M2 12L -12 12L
121 16L2 -12L 8L2
12 -12L 12 -12L

_12L 8L% -2L 16L2

48

= -fL

48

M,=fL2 M, = fL2

36
=RY, +R%

72




VIBRATION OF BEAMS

The 2 Noded Beam element can be used to

determine the natural frequency of transverse

vibration. The governing equations for

transverse vibration of a beam Is given by

Eld*w -pd?w =0 -2 (1)

dx* dt?

This can be converted to a different form by

considering

w =W sin ot dw=Waw,Cos ot
d’w = -o,2 Wsin ot dt

dt? =-o,2w



~Eld*w + pwo, 2 =0
dx?

he weak form of this egn. Is given by

2 2
IEId\;Vd;/
dx° dx

|
dx — j PAW(X)V(X)dxw * =0
0

0



Substituting for w(x) and v(x) as given below
Wl
91
W(X)=<N; N, N, N,>5 "¢

2

W
05
le

w(x) = N,w, + N, 8, + N,w, + N6,
and

v(X)=N,,N,,N;,N,



| dN
J-dN | dy
0 dx

_I[ANNdX =0
0



The elemental matrixes are given by

12 6L -12L 6L
Stiffness Matrix [K] = El | 6L 4L2 -6L 2L2
312 -6L 12 -6L

\6L 2L2 -6L 4L2/

/156 22L 54 -13L
Mass Matrix [M] = pAL | 22L 4L2 -13L -3L2
420 | 54 13L 156 -22L

-\13L -3L2 -22L 4L2/




The Eigen Value problem is given by
[KI{w} - [M] @, {w} =0

or

K] = M] o, 2}{w} =0

Here {w} gives the eigen vector or the vector that
defines the mode shape corresponding to each
eigen value o, (Natural frequency).

Since|w/# 0| [K] - [M]|o, 2 = 0
This equation can be solved for natural
frequencies.



Example 1
Natural Frequency of a fixed — fixed Beam

/
Z z
/] 7
g L/
L
& &
WTH W

Boundary conditions are w, =8,=0,=0.
Therefore the eigen value equation reduces
to the following.



12
ol
—-12
6l

6l
41°
— ol
21°

156 22/
22¢
54

-13¢

40°
13/
-3¢?

—-12
— 6l
12

— 6l

54
13/
156

ol
21°
— ol
4%

1370 |
-3¢°
22/

220 156



12 6l -12 6l | (156 22¢ 54 137
6l 41> -6l 2I°  pAl| 22! 4% 130 -3/? 2
-12 -6l 12 -6l| 420| 54 13¢ 156 -22¢| "
6l 217 -6l 417 43¢ -3¢ -22¢ 156
;12 61 56— 22754137
E6L— 4l — At 122 442 13 3?2a)2_0
1° | -12 -l 420| 54 18¢ 156 -2p¢| "
—6—2} ~137=37* =227 156~




El 156p4
3 P g a)nz — O
| 420
Dividing throughout by 12EI/{3and solving for
w,we get

12

5.68 | EI
w, = —
12\ Ap
Substitute L = £/2
22.7135 | EI
L. = —

| L Ap



Note:-

»In such vibration problems If we require first
two natural frequencies then we shall have to
discretize the beam into two elements, which
will give 2 positive roots.

» The lower frequency represents the first
(fundamental) natural frequency and the higher
the second natural frequency.

» Substituting the natural frequencies we can
obtain the nodal displacements which
represents the mode shape.



Example 2: Natural frequency of cantilever
Beam

ANANANANAN

E.L1
1 2
O @
w
W‘f 91 2 92

Boundary conditions for this beam are

At x=0 w;, =0 andB,=0

At x={ Eld®w=0andEld°w=M=0
dx3 dx?




12
6l
—-12
6l

6l
41°
— 6l
21°

~12 6l
—6l 212
12 -6l
—6l 41%|

_pA
420

156 22/
220 407
54  13¢

130 -3¢°

o4
13/

130
-3¢°

156
-22/

-22/

156

Dividing throughout by El/I° and putting

pAL”

420E1



(12 — 1561) (4L2 — 4L2)) — (2281 — 6L)2 = 0
Dividing throughout 4L>2

(12 — 156A) (1 -A) — (111 — 3)2 = 0
3542 — 102 A+ 3= 0

Solving for the roots of the above equation we
get when A, =0.03 and A, = 2.88



when i, = 0.03

3.95 | El
W, =
1>\ Ap
When A, =2 .88
34.78 | EI
a). =

n
|2

Ap



Mode Shapes for Cantilever

beam
First mode shape

| Second mode shape

Third mode shape @




Natural frequency of vibration of a simply
supported beam:

(2) Boundary Condition: w; =0 &96,=0



12
6l
—-12
6l

6l -12
41° ol
-6l 12
21> -6l

ol
21°
— ol

417

_pA
420

156
220
54

22¢ 54
4¢0% 13/
13¢ 156

130
-3¢°
22/

130 -3¢* -22¢ 156

~.Equilibrium Equation is

El
rB

412
72

ZKZJ

A2

420

B p_A&*)n2 {4[2

3{°

312
a2

<



Solving the above we get

10.94 | EI
@, =
: |2 Ap
50.12 | EI
@ ., = —




{f}e:— -+ 3

12 ol

6l  41°
-12 ol
6l 2I°

156 22¢
220  4Ar?
54 13/
-13¢ -3¢7

| /6

—1/6)

< o o =

—-12
— 6l
12

— 6l

54
13/
156
-220

6l
21°
— ol
417

137 |
-3¢°
-22/
156
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TWO DIMENSIONAL ELEMENTS

LECTURE 7



DIMENSIONALITY

Physical problems can be classified
Into

(1) I dimensional

(i) 1l dimensional

(111) Il dimensional problems.




eometry Boundary

Line

area (>
S
Volume -




I-D PROBLEMS:-

When the geometry, material
properties and field variables such as
displacement, temperature, pressure
etc can be described in terms of only
one spatial co-ordinate we can go In
for one-dimensional modeling

L

g




2D PROBLEMS:-

When the geometry and other
parameters are described in terms of two
iIndependent co-ordinates we go In for
two-dimensional modeling.

L

/ y




| D elements

1, U )
L &
1 2
2 NODED LINEAR ELEMENT
U U, s Used when field
. * e > variable varies along
1 2 the axial dirction
3 NODED QUADRATIC ELEMENT
u, U, Uz Uy
- > & .
1 2 3 4 J

4 NODED CUBIC ELEMENT

W1 0, Ws 0, Y Used when field
e 3 variable varies

L 2 perpendicular to
2 NODED BEAM ELEMENT the axis




Discretization error E““'I‘_f"*’"‘_u’

/ Y

Domain
2

Two dimensional domain discretised using
triangular elements



» 2D problems are described by partial
differential equations over geometrically

complex regions.

» The boundary of a two dimensional
domain is in general a curve i.e. the field
variable varies with respect to x & y axes.

» Therefore the finite elements are simple
2D geometric shapes that can be used to
approximate a given 2D domain as well as

the solution over It.



»Consequently in the Finite Element
Analysis of 2D problems we have two
approximation errors.

»Approximation errors due to
approximation of solution over the
element.

»Discretisation errors due to the
approximation of the domain into finite

elements.



2

Constant strain
triangular element

Linear strain
triangular element

1 2

Bilinear Rectangular
element

Eight noded quadratic
guadrilateral elements



1 2

Linear Quadrilateral element



General form of a2 D second order
equation is given as

2 2 2
all% +a22% +a12% +a21% -3, +f(xy) = 0



CASE |

The first application area Is the
torsion of Non-Circular sections. The
governing differential equations Is

1a%+1a%

G & G &°

where G Is the shear modulus of the

material and 0 Is the angle of twist. The

above Equation Is obtained from equation
(2) by noting that.

a,, = a,, = 1/G, a,, = 0 andf = 20

+20 =0



(a)

(b)

ub

14



| [

(a)

[ [ T1 1
[ -

(b)

15



i Deflected

membrane
shape\\

RERREER
Uniform
pressure p

The thin membrane attached to the contour C.

Bauchau and Craig notes, August 2006
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http://www.ae.msstate.edu/%7Emasoud/Teaching/SA2/A6.5 _more2.html

17



Elastic Membrane Analogy
0,=0, 0;=0

http://www.ae.msstate.edu/%7Emasoud/Teaching/SA2/A6.5 more3.html

18



Elastic Membrane Analogy
0,= Maximum

Membrmane e —
*ﬁf ol e NN,
P o - - )
TFame == \ i Ay
o e
St AT A TS

A
5| O N e

S i S
h_"--. T

o,

19



The variable ¢ Is a stress function and the
shear stresses within the shaft are related to
the derivatives of ¢ with respect to x and y.

o Bl
T - — = -
ZX 8y and 7T zy X

On the free boundary ¢ = 0. This is the case
of a Poisson’s Equation

20



CASE |l
Several Fluid Mechanics
Problems are embedded within equation
(2). The streamline and potential
formulations for an ideal irrotational fluid
are governed by
0°d 0°d
— 4+ — — O
W BY: and
Oy . v _ g respectively
aXZ ayZ




The streamlines y are perpendicular to
the constant potential lines ¢ , and the
velocity components are related to the
derivatives of either ¢ or  with respect
to x andy.

22



(a) Irrotational flow.

ﬂ
RN

(b) Rotational flow.

23



== ==
*Mﬁ

—

(c) Inviscid, wrrotational flow about an arfoil.

24



CASE |l

The flow of water within the earth Is
governed by equations in (2). The seepage of
water under a dam or retaining wall and with In
a confined acqufier is given by

2 2
D % + D (l) =
OX* Y oy
Where D, and D, are the permeabllities of the
earth material and ¢ represents the piezometric

head.



The water level around a well during the
pumping process is governed by

2 2

where Q Is a point sink term

D

26



CASE IV

There are two heat transfer
equations embedded with (2). The heat
transfer from a 2-D fin to the surrounding
fluid by convection is governed by

2 2
Xa—l- +Kya—z-@T-2—hToo:O
OX oy t t
The coefficients K, and K, represent the
thermal conductive coefficient in the X

and y directions, respectively;

K

27



h Is the convection coefficient; t I1s the
thickness of the fin; Too IS the ambient
temperature of the medium and IS the
temperature of the fin.

If the fin Is assumed to be thin and the heat
loss from the edges Is neglected. Then the
equation becomes

o°T . O°T

ny Y oy



CASE V
A fluid vibrating within a closed
volume Is represented as
2 2 2
a_lj + g + W_2 P =0
OX oy C

where P Is the pressure excess above
the ambient pressure, w Is the wave
frequency and c Is the wave velocity In
the medium.



CASE VI

When g ..Is negative and ¢ equals zero,

. - 00 ; .
the differential equation Is called a Helmholtz
equation. A negative dyyyields an eigen value
problem. Physical problems of Helmholtz
eqguation iIs the wave motion for shallow bodies
of water and Acoustical Vibrations in closed
rooms

O°W o'w  AIT*
2 +h > T 2 w=0
X %) gTl

h



Where,
h Is water depth at the gquiescent state

w IS the wave height above the quiescent level
g Is the gravitational constant and

T Is the period of oscillations

31



CASE VI

In the area of electrical engineering,
there are several interacting problems involving
scalar and vector fields. In an Isotropic
dielectric medium with a permittivity ¢ (F/m),
and a volume charge density p (C/m) the
electric potential u (V) must satisfy the
equation

(A%u APw)
+
Nz S

+p:0




The magnetic field problem is represented by

o‘u . J°u
&2 + @/2 _ O

u

where
u Is the scalar magnetic potential (A) and
u Is the permeability

33



Types of 2D Problems
»VECTOR VARIABLE PROBLEMS

e.g. Torsion of non-circular shafts,
Heat transfer through fins

»SCALAR VARIABLE PROBLEMS

e.g. Structural problems

34



Shape functions for three noded linear
trtangular element also called as
Constant strain triangular(CST) element

xy) 3 Y3
3 3

(X.y )
2 2

1
u
(x.y ) U,

1,2,3 Node numbers

u;,u,,u; Nodal value of field variable

(X1,Y1), (X5,¥,)(X3,Y3) nodal coordinates 35




= X+ a
Displacement model; UY(X.y)=a, +a, 3y

u(x,y)=<1 x y><a,

U, =a, + a, X, +ajy,
U, =a, + a, X, +a,y,
U; =ad; + d,X; +aA;Y;

)
)

U, 1 X,y a,
W,e= |1 X, Yy, <a,;
U | _1 X; Y3 | (35

Le.{u}” =[P{a}’

36



The generalised coordinates are given In
terms of nodal displacements as

{af = [PT" {u¥

provided |[P] # O which is the area
bounded by the three vertices.

37



Substituting for as in the displacement model

al
u(x,y)=<1 x y><a,,
9
— — -1
L Xy Y|
1
ux,y)=<1 x y>I1 X, Y, | qu
u
1 X3 Yys|
u m

= <1x3>[3x3]qu, p =< N,N,N, ><u, ¢

38



(-
N
_><
<<
N

|
1M
_Z
£
<
._C

where,

N; (X)y) = i (o; + BiX +p;y)
OCI — XJ yk Xk yj
ﬁl — yJ -yk

Vi — _(Xj - X

and Here i, j, k permute in the natural order

39



1

N; (X)y) = E (o; + BiX + 7, Y)
N, (X,y) = i (o, + B X +7,Y)

N, (X)y) = i(0‘2'|'182X"'V2Y)
, (XY oA

N, (X)y) = i (a5 + BsX +p,Y)

40



= XY - XY
= X Y3 - XY,
= XY - X Ys
= XY, - XY
= Y~ Y«

= Y2 Y3

= Y3 Y1

= 1Y

Vi
/1

V2
V3

X1 Y
Xy Yol = 2 Ae
X3 Y3



1
Exx = ﬁ(ﬂlul + B,uU, + B;U,)

1
Eyy = ﬁ(?ﬁul +7,U, +735Ug)



e
-
Lapd

| o

Variation of Shape functions for CST element

43



=l

¢=a) +ax + agy

| T
' -‘\ y
k
(x.y)
3 3
X .
J {23*‘2}

44



Applications of the CST Element:

>- Used in areas where the strain gradient is small.
»- Used In mesh transition areas (fine mesh to
coarse mesh).

»- Use of CST In stress concentration or other

crucial areas in the structure, such as edges of

holes and corners is to be avoided

»- Recommended for quick and preliminary FE
analysis of 2-D problems



Probleml:- Given the nodal values of
pressure In a triangular element as P, = 40
N/cm?, P, = 34 N/cm? & P, = 46 N/cm?
evaluate the element shape functions and
calculate the value of the pressure at a
point whose co-ordinates are given by
(2, 1.5). The co-ordinates of nodes 1, 2 & 3
are respectively (0,0), (4, 1.5), (2,5).




(2,9)

46 Nh:m2

34 Niem”

(4,1.5)

(0,0) 40 Niem”



1 0O 1XqYy
2A = |1 405(=|1x,y, [=19cm?
1 2 5 1 X3Y3

Ny =1 (o +Bx+v,y)=1(19-4.5x - 2y)
2A 19

Ny =1 (o, + BoX +y5y) = 1 (O5x — 2y)
2A 19

N =1 (a5 + Bax +y3y) = 1 (-0.5x + 4y)
2A 19



Now P(X, y) = N,P, + N,P, + N;P,
=1/19 [(19 —4.5x — 2y) 40 +
(5x — 2y) 34— (0.5x — 4y) 46]

~P(2,15)=14.74 + 12,53 + 12.11
= 39.37 N/cm?



Bl — LINEAR RECTANGULAR ELEMENT

Cartesian co-ordinates (generalized co-
ordinates)

Y
0.25) (2a,2b)
' 1 3
2b
1 2
(0.0) (22,0)

50



Let the assumed displacement model be
given by

U(X,y) = Co + C;X + Cy + Caxy ---- (1)
=<1 XYy Xy> [Cy |

51



Let u,, U,, U; & U, represent the nodal values
of the field variable at nodes 1, 2, 3 & 4.
Substituting the respective X, y co-ordinates
of the nodes we get

U, =cCc,

u,=Ccy+2ac,
u,=c,+2ac,+2bc,+4abc,
u,=cy+2bc,

52



or

1 0 0 0 (C) (U
12a 0 O C, U, ---(2)
1 2a 2b 4ab| jc,
10 2b 0 |c5| |ug

|
-
w

Here c; represents the generalised co-ordinates
which can be obtained by

C, 170 0 0 (ug
c,/l= |12a 0 O u,| ---—-- (3)
c, | 1 2a 2b 4ab| Ju,|
C, 1020 0 ) |u,

53



Substituting (3) In (1) we get

u(x,y)=<1 x y xy>

1 2a 0 O U,
1 2a 2b 4ab| |u,

10 0 0 )u,

\1 O 2b O / \U4 J

1x4 4 x4
\ Y,
Y
(1 x4)
,u1
=<N; N, N;g N> uy |

U3

Uy

54
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56



LAGRANGIAN INTERPOLATION
POLYNOMIALS: (CARTESIAN CO-ORDINATES)

(X=%;) (Y—Y4) :(X—Zaj(y—ij

N, (X, ¥) = N;(X)N,(y) = (X,—%,) (Y, —V,) \0-2a)\0-2b

— _ (X_X1) (y_ys) _ X—0 y—2b
Nz(X, Y)— Nz(X)Nz(y)— (Xz—Xl) (yz_ys) _(Za—OJ(O_ij

Lol

57



. . (X_X4) (y_yz) _ x-0 y—O
a0 = RN ) = ) (o= v,) ‘(Za—oj(zb—oj

L

B C(x=x3) (y-vy) (x-2a) y-0
Ny )= O Y = oy (s ) ‘(0—2aj(2b—oj

{34

58



It should be noted here that > N,=1 at any
point in the element. =1

The variation of field variable over the element
of bilinear element is given by

u(x, y) = Niu; + Nou, + Nauz + Nyu,

A
= 2 Nu

=1

59
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Determine three points on the 50°C contour
Ine for the rectangular element shown the
-1g. The nodal values are T, =42°C, T, =
54°C, T, =56°C, and T, = 46°C.

Y A y
A
| 46 56
(5,5) 04 —;9(8, D)
42’ f‘l 2*‘ o . X
(5, 3) (8, 3)
S X

Nodal Coordinates 61



The length of the sides are
2b=X,—X;, =8-5=3
2a=Y,—-Y,=5-3=2

Substituting these values in the shape

functions

(XY N =2
Nl_(l 3j( zj © 6

X[,y N =Y 1—5j
NZ_S(]- 2) 4 2( 3

62



Inspection reveals that the 50°C contour line
Intersects the sides 3-4 and 1-2; therefore, we
need to assume values of y and calculate
values of x. Along side 1-2, y=0 and

3 3

Substituting for T, and T, and solving gives
x=2.0. Along side 4-2, y= 2a =2 and

T(X,Y) :§T4 +( —%)TB =50

T(X,y) = (1—5jT1 + 27, =50

63



Substituting for T, and T; and solving gives x = 1.2

To obtain the third point, assume that y=a=1, then

1 X X X 1 X
T(Xx,y)=—|1-——1T,+—-T,+—T,+—|1—— [T, =50

Substituting the nodal values gives

g(—42+54+56—46)+%(42+46)=50

Solving yields x= 1.64

64



(1.2,2)

T ST N
2

(1.64,1)

- — & ———>3
(2, 0)

The xy coordinates of the three points are
(1.2,2), (1.64,1) and (2,0). The XY coordinates
of these points are (6.2,5), (6.64,4) and (7,3).
A straight line from (6.2,5) to (7,3) passes
through the point (6.60,4); therefore, the
contour line Is not straight. 65




Torsion of Non-circular shaft:

The governing equation for the torsion
problem is given by

2 2
1 a?+1a?+29:0
G & G &
2 2
7, 79 = oo
R
ZX Ofy y 03(

On the free boundary ¢ = 0.



To derive the weak form multiply the equation
with a weighting function w(x,y)

o%¢ . I

@(2 @/2 + ZGQ :O

e,

”(gﬁf + i;f)W(X, y)dxdy +HZG(9W(X, y)dxdy =0

67



”£§22¢ 4 é’zfjw(x, y)dxdy +HZG(9W(X, y)dxdy =0

[

§W(x, Y) —n —” 9 adedy

PY W(x y)dxdy+”

+§W(x y)—n —” 9 6dedy+”2(39 w(x, y)dxdy =0

where n, and n, are the components
(direction cosines) of the unit normal vector



As @ Is specified along the boundaries w(x,y)

= 0 and the boundary terms vanish. The weak
form becomes

O OW O OW
” : dXdY+H ; @dxdy: H 2G6H w(x, y)dxdy

Assuming a CST element and substituting @
as N, ®,+ N,d,+ N;®; and w(x,y) as Ny, N,

N, we get a system of 3 equations in 3
unknowns which can be written as

69



b =

Where

K= [[ T Sy [[ 2

= || 2G6 N jdxdy =0

ON .
L1 dxdy
%

70



Kij — _” ag( 82(1 dXdy Jj aglli aglyj dxdy
K, = ” Ny dxdy+H gy agll dxdy
N; (X)y) = 2;6 (o + ;X +7,Y)




4A2
1
4A

e =

1
4 A

1

B[] dxdy+—

(161161 T 7/17/1)

([ .B.0xdy+
(131132 T 7/17/2)

V171 ” dxdy

AN ” y17 ,dxdy

72



Kis =
1

Y

4A

Kzs —

1

% ([ B Budxdy+ o [ 7272dxy
(BB +7173)

[ Bopaxay s [ raradxay
——(BofB, +727>)

o [ Bopaxay+ o [[ rasdxcy

:—(182,83 "’7/27/3)

4A



Kas = AA2 ”ﬂcalgsd)(dy+ AN ”737/3dXdy
1
4A (183133"'7/37/3)
_1812"'7/12 Db, + 717 131:83+7/17/3_
Kl= — 2 . 2
[ ] A A b +7s :82/3;4'7/27/3
i D3 + 73 ]

74



f, =[] 2G6 N dxdy =0

f, =|[2G6 N,dxdy =0

- 2602
3

f, ={[2GON,dxdy =0

= 2(36’é
3



f, = ”269 N,dxdy =0

=2(36’é
3
(fl\ fl\
A
S f2 >:269§<1>

76



2D linear elements
Linear triangular elements
Bi linear rectangular elements

Shape functions
Weak form for torsion problem
Simple problems

77



TWO DIMENSIONAL ELEMENTS

LECTURE 8



Types of 2D Problems

»VECTOR VARIABLE PROBLEMS
e.g. Structural problems

»SCALAR VARIABLE PROBLEMS
e.g. Torsion of non-circular shafts,

Heat transfer through fins



The first application area Is the
torsion_of Non-Circular sections. The
governing differential equation Is

1a%+1a%
G &* G g°

+20 =0

where G - shear modulus of the material
O - Is the angle of twist.



(a)

(b)

ub



| [

(a)

[ [ T1 1
[ -

(b)



http://www.ae.msstate.edu/%7Emasoud/Teaching/SA2/A6.5 _more2.html



Elastic Membrane Analogy
0,=0, 0;=0

http://www.ae.msstate.edu/%7Emasoud/Teaching/SA2/A6.5 more3.html



Elastic Membrane Analogy
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i Deflected

membrane
shape\\

RERREER
Uniform
pressure p

The thin membrane attached to the contour C.

Bauchau and Craig notes, August 2006



Torsion of Non-circular shafts:

The governing equation for the torsion
problem is given by

2 2
1 §2¢+1§2¢+29:O
G & G &
2 2
.
L=
ZX Ofy y 03(

On the free boundary ¢=0.



lere ¢ - IS a stress function
The shear stresses within the shaft are related
to the derivatives of ¢ with respect to x and .

_ o o

ZX Tz
EY and y Y

On the free boundary ¢ = 0. This is the case
of a Poisson’s Equation

T



To derive the weak form multiply the governing
equation with a weighting function w(x,y)

o%¢ . I

0’3(2 ayz + 2GO =0

e,

H (ﬁ ¢)W(x y)dxdy + j j 2GO w(X, y)dxdy = 0

&2



”£§22¢ 4 é’zfjw(x, y)dxdy +HZG(9W(X, y)dxdy =0

[

§W(x y)—n _”8¢ adedy

PY W(x y)dxdy+”

+§W(x y)—n —” 9 6dedy+”2(39 w(x, y)dxdy =0

where n, and n, are the components (direction
cosines) of the unit normal vector



As @ is specified along the boundaries w(x,y) =

and the boundary terms vanish. The weak form
becomes

H O¢ 5dedy+ ” 0¢ fi;‘glvdxdy = H 2GO w(X, y)dxdy

Assuming a CST element and substituting @ as
N,®,+ N,®,+ N;@;and w(x,y) as N, N, N;we
get a system of 3 equations in 3 unknowns which
can be written as



Where

Ky = 15 o[]S

f :HZGQdexdy:O

f¢l\ ffl\
¢, r =31, ¢
\¢%J \f3)
'adexd
gy y



Kij — _” ag(i agl(j dXdy Jj aglli aglyj dxdy
K, = _[ _[ agl(l 5;'(1 dxdy + j j 62/1 agll dxdy
N; (X)y) = i (o + ;X +7,Y)




T AA?

2 = a7
(161182 T 7/17/2)

1
4 A

(181181 +7/17/1)A: ﬁ(ﬂlﬁl +7/17/1)

jjﬂlﬂdedy+ ” y.7,dxdy

4A°



Kis =
1

Y

4A

Kzs —

1

4A°
(181,33 + 7/17/3)

(/82/82 "‘7/27/2)

o [[ .oy

:—(182,83 "’7/27/3)

4A

([ B.pdxdy +—

4A°

4A°

” y17,0xdy

. _” Y27 50xdy



K33

IIIBSIB3dXdy+ ” ¥y s0xdy

4A° 4A°

L (BB 7a75)

4A

1 _1812 +7/12 Db, + iy, B Bs "‘7/17/3_
[K] = ﬂ 1812+7/22 DPalBs +¥2¥s
Bs +7s




f, =[] 2G6 N dxdy =0

f, = HZG@ N,dxdy =C

= 26(9é
3

f, ={[2GON,dxdy =0

= 2(36’é
3



f, = HZGH N,dxdy =0

:266'é
3
rflw rlw
A
1f, L =2Go =11}
3
Lf3J kl)




Problem: Determine the stresses in a shaft of
sguare cross section as shown in fig.

1cm

2G0 =2790



1cm

1cm

1cm

=

1cm

2G:6 = 2790



=0
1cm
- 9=0
=/6///7; 1em

2GA =2790

24



Element Connectivity

Element|i |} |k
No.
1 1124
2 21 3|5
3 51412
4 4156

25



4
(0.25,0.25)

Areazixbxhtzixixlzi
2 2 4 4 32

(0.25.,0)

1 (0.0) 2

o = XY XY BT YiYe Y- (XX

0.0625 -0.25 0

0 0.125 -0.25

0 0 0.25




1312 "'7/12 BB+ 1y, BByt riys

- 0.0625
—0.0625
0

1

-1 2

0

1812+7/22

—0.0625
0.125

—0.0625

Bofs + 7575
By +73

—0.0625 0.0625

-1 0

-1 1

—1




28



-1

2+1

-1

29



4

-1

5

-1

-1-1 | 0+0

1+2

-1

2+1+1

-1-1

-1

1
-1

2
-1

0

5T

4
2

[K]®

1
2

30



[K]*

b | =
=2 T L

1
-1
0

-1
2
-1

0]

-1
1

1 2 3 4 5 6
1 -1 0
-1 (2+1 | -1 |-1- [0+0
+1 1
-1 2 -1
0 -1-1 1+ [-1-1 10
2+
1
O+0 |-1 |-1- [1+1 |-1
1 +2
0 -1 1

31



[K]=

1

2

1 -1 0 0~0 O]
11 4 -1 —N
0 -1 2 0 -1 0
0 -2 0 4 -2 0
\0—1 2 4 -1
0 0NO0 0 -1 1l

~

Semi bandwith =( Max. diff. bet node nos +1)x DOF
= (3+1)x1=4
2G 0= 2790 N/mm?

{f}e — 2G O x A

3

2790
3x32

= 29.06

— 32



33

2

29.06 11¢

2
3

1] 5

fl\

J

.

29.06 <1;




= 29.06 {1

= 29.06 11;

o o1 B~

N B~ O

1 1

2 | 1+1+
1

3 1

4 1+1

5 1+1

6

1+1+1

1+1+1

1+1+1

OO | IWIN|PF

34



35

_ _
_131331_

29.06

1
3
1
3
3
1

f
29.06

0.25

0.25

|

0]
4 -1 -2
D

?
?,
Ps
?,
Ps
Ps

1 -1

[K]




Solving we get

¢, =217.95
¢, = 159.83
¢, =123.505
%
sz:zf ’Tyz:'a_f
Txz g 8 {N. @, + Nog, +N3g, }

= { Y101 * v20, +y304 }, = 16 (-9.08125)

= -144 N/mm?



=-0¢ =- 0 {Ni¢ + Nyp, +N3g, }
OX OX
={ B4, + B> B3¢, }

= -16 (-14.53) = 232.48 N/mm?

For element 2

o= 1 {ndotyodst 1205}
2A
Tyz = -1 { B¢, + Brps +B3s }

2A



For element 3

U= A5t 1o ut 1300}

Ty, = - {Bigs + By +B3p; }
For element 4

U= AN 0at 1o 05t 1306}

Tyz = - { B19s t Bots +B30; }



T1:2j¢dA
= 2 [(Ny¢h + N, ¢, + Nyg, )dA
2
=+ 4, + 43 A

Similarly determine T°T° &T*

Total Torque=  (T*+T2+T3+T*)*8






PROBLEM 2:

T=180°C

] h=50W/'ni C
k=15 WmC

06m 1o =23

/

Insulared

= 0.4m
T=180"C



a
=180 C

o =30 W.T--"nf n(ﬁ‘
k=15 IWmC

06m 1oy =23

/

Insulated

0.4m I\

a
=180 C



insulated /

1

N

| )

2

\

Symmetry boundary condition

Element

1

2

| ol e

WS- DN

Ol W| W | X

43



5 (0,0.3) 4 (0.4,0.3)

3 (0.4,0.15)

2 (0.4,0)



K- 82—I+@2—12- -=Q
OX" oy
Element |1 | ] | K

1 112 | 3
2 514 | 3
3 1|3 |5

45



. ,812"'7/12 BB+ 7y, Py Pyt s
[k]e:ﬂ GofBy + 7Y 1812"'7/22 DB+ 7,75
_131133 + 7173 B3 7273 /832 "'7/??

Element 1 and 2 Element 3

3,=-0.15 ,v, =0, 3, =0.15 ,vy, =0,
33=0 ,73=04 B;=0 , 3 = 0.4

B,=(-0.15) (-1), B,=0.3, B3=-0.15
y12_0_4 y Y2 :O,y3:O.4



[k]gond :[k]iond =

1.5

A

- 0.0225

—0.0225

—0.0225 0.1825

0

—x0.4x0.15
2

=10
0

- 0.28125
=1 —-0.28125
0

- 0.028125
—0.028125 0.228125
—-0.2

—0.28125
2.28125
—2

—0.028125

0
—2
2

—0.16

0
-0.2
0.2

0
—0.16
0.16




L - 0.1825 —-0.045 -0.1825]

k]2, = ; ~0.045 0.09 —0.045

4><2><§><0-4><0-15 —0.1825 -0.045 0.1825

1.14 -0.28125 -0.86

= 0.5625 —-0.28125
1.14 7| 3

hpl[2 1 I \

kK] =&
[ ]COﬂV 6 1

= p=1



" O 0 O
[k]ionv:[k](l:onvzg 0 2 1
01 2
p 0 0 0
5 . =10 25 125
! 0 125 25
! \ i ) PR - _\
0 0
hiT

Q=—2:1;:=4193.75;
1| (93.75

.




[k]eThermaI — [k]condn + [k]conv

K. =[k]; =

[[k]; =

- 0.28125 —0.28125
—0.28125 4.78
0 —-0.75
- 1.14 —0.28125
—0.28125 0.5625
-0.86 -0.28125

0
—~0.75
45

—0.86
—0.28125
1.14




T, 0 ,
T, 03.75
[k].<T,r=[Q]° —> I[QI°=49375+9375,
-|-4 93.75
§ O J
\TSJ
142125 —0.28125 -—0.28125 0 -0.86 |
-0.28125  4.78 ~-0.75 0 0
[k]® =| —0.28125 —0.75 9.5625 -0.75 -0.28125
0 0 -0.75 478  —0.28125
- -0.86 0 —0.28125 -0.28125 1.42125




N

 1.42125 —0.28125 -0.28125 0
—0.28125 4.78 —0.75 0
-0.28125 -0.75 9.5625 —0.75

0 0 —0.75 4.78
| —0.86 0 —0.28125 -0.28125
[ 1.42125 —0.28125 -0.28125 0 —0.¢
—0.28125 4.78 —-0.75 0 0
-0.28125 -0.75 9.5625 -0.75 -0.28
0 0 —-0.75 4.78 —-0.28

nanr
V.00

V)

N 279019
— V.01

N 25019
—VU.201249

1 A0
l.9441

~0.86 (T, 0
0 T, 1
~0.28125 4T, + =93.752"
~0.28125||T, 1
1.42125 ||T,| 0
6 (T, ( 0+0.86*180
T, 1
125 [IT, ! = 93.75) 2 + 0.28125*180
125 ||T, 1+0.28125*180
25 ||T, 0

Substitute for T-as 80° and
evaluate T, T, ,T;and T,

3\

Ve




1
Exx = ﬁ(ﬂlul + B,uU, + B;U,)

1
Eyy = ﬁ(?ﬁul +7,U, +735Ug)

53
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Variation of Shape functions for CST element
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TWO DIMENSIONAL ELEMENTS- THERMAL PROBLEMS

LECTURE 9



Types of 2D Problems

»VECTOR VARIABLE PROBLEMS
e.g. Structural problems

»SCALAR VARIABLE PROBLEMS
e.g. Torsion of non-circular shafts,

Heat transfer through fins



Ny

h

Yy

VY




Governing Equation for 2D Heat transfer
by conduction and convection

0T 0T
_|_

\axz ayz J

k- L_h(T-T.)=0

Weak form of the equation

oT ow oT ow
”@( @(dxdy+”éy Py

= ” hT_ w(X, y)dxdy

dxdy + ” hTw(X, y)dxdy



& &

N; (X)y) = i (o; + X+, Y)

[K]econd”- :ﬂ PBy + 1) 1822"'7/22 DB+ 7,7
_131:83+7/17/3 DB + 7,7 1832+7/§

1812"'7/12 P+, Py Bt s

| jdxdy+” L~ dxdy




K ony =

= p=1

hpl | 2

0




PROBLEM 1:

T=180°C

o =50 W/m C
k=15 W/mC

-n i
o6m Lo =25 C

/

Insulared

== (.4m
T=180"C



a
=180 C

o h=50 W/ni C
k=15 WmC

-u -
06m Lo =25 C

/

Insulared

= 0.4m
T=180"C



o

2

1 \

Symmetry boundary condition

Element | 1| ] | K
1 112 | 3
2 51 4 | 3
3 11 3|5




5 (0,0.3) 4 (0.4,0.3)

3 (0.4,0.15)

2 (0.4,0)



,812"'7/12 BB+ 7y, Py Pyt s
[k]e:4— GofBy + 7Y 1822"'7/22 DB+ 7,75
_131133 + 7173 B3 7273 /832 "'7/??

Element 1 and 2 Element 3
B,=-0.15 ,vy, =0, 3, =015 ,y,=-04
B2=0.15 ,vy,=-04 pB,=03 ,y, =0
B3=0 ,73=04 [B3=-0.15 ,y,=04




. - 0.0225 -0.0225 O
(K12, =[K]. . = T —-0.0225 0.1825 -0.16
§x04x015_ 0 -0.16 016

©0.028125 —0.028125 0
—10 | -0.028125 0.228125 —0.2
0 -02 02

- 0.28125 -0.28125 0
=|—-0.28125 2.28125 -2
0 —2 2




T - 0.1825 -0.045 -0.1825

k]2, = ; ~0.045 0.09 —0.045

4><2><§><0-4><0-15 —0.1825 -0.045 0.1825

1.14 -0.28125 -0.86
= 0.5625 —-0.28125
1.14




= 2|5
6 |1 2
= p=1
Element |1 | | | K
1 1] 2 | 3
2 514 | 3
3 1|1 3| 5




0 0 0]
K = [, =0 2 1
01 2
, 0 0 0
| 3 -|0 25 1.25
f 0 125 25
0

Q=—291:=<93.75;
93.75




[k]eThermaI — [k]condn + [k]conv

(KT = K]

[k]fh =

- 0.28125
—0.28125
0

1.14
—0.28125
—0.86

~0.28125 0
478  -0.75
~075 45
~0.28125 —0.86
0.5625 —0.28125
~028125  1.14




T \
1 0
T, 93.75
G G _
[|<]th<-|-3 >=[Q] :> [Q]° =<93.75+93.75;
93.75
T4
g O J
\Tsj
- 1.42125 —0.28125 -0.28125 0 ~0.86 |
—0.28125 4,78 —~0.75 0 0
[K]® =| -0.28125 —0.75 90.5625 -0.75 —-0.28125
0 0 —~0.75 4.78 —0.28125
- -0.86 0 —0.28125 -0.28125 1.42125 |




[ 142125 —0.28125 -0.28125 0 -0.86 |[T,
—~0.28125  4.78 ~-0.75 0 0 T,
-0.28125 -0.75 9.5625 ~-0.75 —0.28125\T,

0 0 ~0.75 478  —-0.28125||T,
~0.86 0 —0.28125 -0.28125 1.42125 ||T,|

> = 03.75<

Substitute forT, & T.as 180° and
evaluate T, T, ,T,

:OI—‘I\JHOI




C 142125 —0.28125 -0.28125 C ~0.86 (T,
~028125  4.78 ~0.75 C y||T,
~028125 -075 95625  —0[75 —0.28125iT,
0 0 0-75 478 0-28125-1F,
686 0 — 02315020125 +42425H T
0+0.86*180 )
1 T, =124.5°C
03.75{2 + (0.28125 + 0.75) *180 -
i , =34.0°C
U

T, = 45.4°C






RIGHT

WRONG




1
Exx = ﬁ(ﬂlul + B,uU, + B;U,)

1
Eyy = ﬁ(?ﬁul +7,U, +735Ug)

22
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Variation of Shape functions for CST element

23



STIFFNESS MATRIX FOR BI LINEAR
RECTANGULAR ELEMENT

() nelala
B T Oy 6



dN,

1

dx






















2(a° +
a’—2

2

—(a” +

0°)
D

h*)

| (b* —2a%)

-1 1
1 -1
2 -2

2 2
a‘—2b°

—(a’ +b?)
2(a® +b*) (b*-2a%)
(b* —2a’) 2(a*+b*) (-2b*+a’)
—(a® +b?)

a’ —2b’

(b*> —2a°) |
—(a* +b?)

2(a° +b%) |



th

11



Sl XY N _ Xy
Nl_(l ?J( zj 6
Y X
X[,y N, =2[1-2
=33 =3l
le__i l—l dNaz 1 [yj
dc  2a\ 2b dc  2a\2b
dN, _1(, dN4:_1[y]
dx _Za % dx 2a\ 2b
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VECTOR VARIABLE PROBLEMS

0.0,.,0.T .T_.7T for stresses,

X

and

€. €. 6.7 Yy ¥ for strains.

36



T

Three dimensional stresses



X

Stresses on an elemental cuboid

38



@XX e arxy e aTXZ e BX = O \
oX oy 0z

ot,, + c%zy +0o,,+B,=0 >

_5; oy 0z

aix+8c5yy+ 8ryz+ ByZO
oXx oy oz %

2M, =0 ,2M, =0 & 2M, = 0 yields

Txy = Yyx 1 Tyz = Tzy 1 Tzx = Txz (2)

Force
Equilibrium
Equations



Strain — displacement relations.

Eyxx = OU

OX
Eyy = OV

oy
€,= OW

0z
Yxy= OV + Ou

OX oY
Yyz = OW + OV

oy 0z
Yox = OW + ou

OX 0z



Stress — Strain Relations:-

E E
EW = Oy ~ M (GXX + Gzz)
E E
Szz =0z~ U (Gxx + ny)
E E
Yoy =Ty ! G
Yyz = ryZ/ G



Where E = Young’s Modulus
G = Shear Modulus = E

2 (1+p)
u = Poisson’s ratio



The equations (6) can be written in matrix form as

[Exx\ ﬁ g A 0 0 0 \ [Gxx R
€y -uw 1 -u O 0 0 Oyy
<ezz \ =1|-p -u 1 O 0 0 C,,
Yoy El0 0 0 2(1+w) O 0 |1,
Vyz O 0 O 0 2(1+u) O Ty,
CYZX/ \\O 0O 0O 0 0 2(1+u)/ KTXZ )
{e}=1IC] {o}

. {0} =[C]-1 {€}

=[D] {€}

Here the matrix [D] Is called the constitutive
matrix given by



[Dl= _E
1+

/Htuu

1-2pn  1-2p 1-2p
pooo1l-pop
1-2pn 1-2p 1-2p
B pooo1-p
1-2pn 1-2p 1-2p
0 0 0

0 0

\80 0

Yo

o O




[D]

E

(1+p) (1-2p)

Symmetric

o




Strain and Displacement Relations

For small strains and small rotations. we have,

o o A v
— E = —

Er * V ? }/:n' — —|—
. (9:'(’ i (}J’? . &1} a:f

In matrix form.,

e | [d/ax 0 |
]
S€, =] O é}f&{} or €=A1U

J‘I

v, 9/ a/|

From this relation, we know that the strains (and thus
stresses) are one order lower than the displacements, if the
displacements are represented by polynomials.



Displacements (u. v) 1n a plane element are interpolated
from nodal displacements (u;. v;) using shape functions N; as
follows.

P =

U,

u| [N, O N, 0 - .
= ] ] sy, or u=Nd (11)
L’J 0O N, O N, -

1’2

e -

where N 1s the shape function matrix, u the displacement vector
and d the nodal displacement vector. Here we have assumed
that # depends on the nodal values of # only. and v on nodal

values of v only.

47



From strain-displacement relation (Eq.(8)). the strain vector
1S.

€ =Au=ANd. or e =Bd

where B = AN 1s the strain-displacement matrix.

48



'

Linear Triangular Element

49



U,
v,
ul [N, 0 N, O N, 0]u,
{v}[{] N, 0 N, 0 Ng} v, [
i,
kv3 y

where the shape functions (linear functions 1n x and y) are

1

*?\Il - ﬂ {(.3.*2 V3 = X3V, ) + (,1‘"2 — Vs )X + (3*3 -, ).,1‘"}
, 1

N, = 4 {(.}:3}-‘1 —x, V) +(y, =y )x +(x; —x, )1}
T 1

*NE — E {(*xl*}";z o 'rzyl) + (*}"1 — )V, ):-.." + ('Yz — X )J"}

50
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0 g,
i 0
by 7o

0 pf;
y, O
P, 7s
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Stress-Strain Relations

For elastic and 1sotropic materials, we have.

e | [1/E -v/E 0 ][o.
1€, 1= —-v/E 1/E 0 10, ¢
Vel L 0 0 1/G | T,
ce=E'o

where E the Young’s modulus. v the Poisson’s ratio
and G the shear modulus.

E
S 2(1+v)

{c} =[D] {e}=DBd

Note that. G

52



STRAIN DISPLACEMENT RELATIONS
{e}=N\u=Bd
Where B = = AN

STRESS STRAIN RELATIONS

{c} = [D] {¢}= DBd



2-D APPROXIMATIONS OF 3-D

PROBLEMS

here exists several problems in solid
mechanics that can be formulated as
three Dimensional problems and the
finite element technique can be used to
solve them.

» However it may turn out to be costly and
time consuming to perform Finite
Element Analysis of 3 D problems.

54



»In several practical situations the
geometry and loading may be such that
the problem can be reduced from 3 D to
2 D or from 2D to 1D.

» The two dimensional Iidealizations In
stress analysis include

. PLANE STRESS problems
Il.  PLANE STRAIN problems
.  AXISYMMETRIC problems




PLANE STRESS: - A 3D problem can be
reduced to a plane stress condition If It IS
characterized by very small dimensions In
one of the normal directions.

A
J‘

R -

>
Ny LS :
% -

(M

A thin plate with a cut out subjected to In-
plane loading.

Thin plate subjected to in-plane loading



In these cases the stress components c,, T,,,
& t,, are zero and it Is assumed that no stress
component varies across the thickness. The
state of stress Is then specified by o,, c, and
T, Only, (functions of x & y) and is called
plane stress. The stress strain relations are
given by

A N\
Q
‘<ij

I

M
N
oxr F
O T
o O
J
/—)%\
~<m><m
H_J




PLANE STRAIN:- There exist problems
iInvolving very long bodies Il.e. a body
whose geometry and loading do not vary
significantly in the longitudinal direction.
Such problems are referred to as plane
strain problems.

Some typical examples include a long
cylinder such as a tunnel, culvert or buried
nipe, a laterally loaded retaining wall, a
ong earth dam, and a loaded semi-infinite
nalf space such as a strip footing on a soll
mass.

58



A long dam



In all these problems, the dependant variable
can be assumed to be functions of only X & y
co-ordinates provided that we consider a
cross-section some distance away from the
two ends.
If we further assume that ‘w’ the displacement
component In the ‘z’ direction Is zero at every
cross-section, then the non-zero strain
components will be

5= 0U 8=V (7= AU+ OV

OX oy oy  oX

and the strain components



€, Yxz Yyz WIII vanish. The dependant stress
variables are o,, o, & 1,, and the constitutive
relation for an elastic isotropic material Is given

(o, | C(1-p) vl 0 1 &)

< Oy > = E L (1-}1) 0 &y

Uy (1 + M) (1 — 2“) L 0 0 (149_ 2 ) Txy
2 y - J

It is important to note here that only €, = 0 but ¢, # 0.
£,=0, - K o,—uoc, =0

E E E
;.0,=-U (04 +0y)



AXISYMMETRIC PROBLEMS:- Many

engineering problems involve solids of
revolution (axisymmetric solids) subject to
axially symmetric loading.

Examples are a circular cylinder loaded by
uniform internal or external pressure or other
axially symmetric loading as shown in

Ay

and a semi — infinite half space loaded by a
circular area. eg., a circular footing on a soll
mass.



Because of symmetry the stress components
are independent of the angular co-ordinate ‘0’
and hence all the derivatives with respect to ‘0
vanish and the components v, vVy,Vg,; Tyg 5T gy
are zero. The strain displacement relation are

1

given by
sr:@ﬁ ;£6=£;£Z:@lv ’yrZ:QU'F@LV
OX r 0z 0z or

The constitutive relations Is

Stresses:

(o l—v 1 1 0 &
o E v 11— ) 0 £,
. _
4 - : 9
o | A+vya-2»)| v v l1=v 0 |)g
' o 0o o T
'T'?"—‘ 8 2 i _},F‘_'



Now the strain energy stored in an element is given
by
U=% |\ {e} {c}dv

=% [, {e} [D]{¢€}dv

= Y% |y [B]" {d} [D] [B] {d}dv

The work done by nodal forces is given by
W = % |, {F} {d}dv
Equating for a conservative system we get

Jv ([B]™ [D] [B])dv {d} = {F}
.e. [K] {d} = {F}

where [K] = [\[B]" [D] [B] dv



Problem 2:- Assuming plane stress conditions evaluate
the stiffness matrix for the element shown in Fig.
Assume E= 2 x 105 N/cm? and p= 0.3. ul = 0.000, v,
= 0.0025, u, = 0.0012, v, = 0.000, u; = 0.0000 & v, =
0.0025.




31=Y,—Ys =0-1=-1
3=Y3—Y, =1+1=72
3;=y;—-y2 =-1-0=-1
V1= -(Xp—Xg) =0-2=-2
Y2=-(X3—X) =0-0=0
Y3=-(X =Xp) =2-0= 2




A=Yxbxh=¥%x2x2=2

te}=1

2A

B 0 By O PBs

O v, 0 v, O

71 B v By 7s

={B] {d}

[B]=1_
2(2)

1020-10]
0-2 000
2-1 0 2 2

2
-1

O A
Y3

Bs

J

Ul )
v1
u2
V2
u3
V3




= 2x10°

T-(03)2 0 01-0.3

1l nu O
ul O
00 1-pu
. 2
103 0
031 O

2

N

J



Now we know that the stiffness matrix [K] is given by Iy [B]*[D] [B]dv
Aszsuming unit thickness 1e t =1 we get
[K]=A [B]:[D]{B]

g I
-1 0 -2 1 03 0 -1 020-10
= (2)(2x10%) 0 -2 -1 03 1 0 | % 0-200 02
4(0.91) 2 0 0 0 1 033 -2-102 2-1
0 0 2
-1 0 2
AR Y
6x3 3x3 3xX6

69



e I

=1.099x 102 | 600 325  -500 -350 -100 25
325 1087.5 -300 -175 -25 -912.5

=500 -300 1000 O =500 300
350 175 0 350 350 -173
-100 =25 =500 350 600 -325
\a5 79125 300 -175 -325 1087.5_

60X 06

Note: In order to evaluate the element stress we can use the equation

1o} =[D] [B] {d}
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TWO DIMENSIONAL ELEMENTS- VECTOR VARIABLES

LECTURE 10



Types of 2D Problems

»VECTOR VARIABLE PROBLEMS
e.g. Structural problems

»SCALAR VARIABLE PROBLEMS
e.g. Torsion of non-circular shafts,

Heat transfer through fins



T

Three dimensional stresses



X

Stresses on an elemental cuboid



Stresses in 3D

s 3
GXX
O JJ’J’
yy A

GZZ
Txy

3 Tyx >
Tyz
sz
TXZ

L TZX J



0
O Tty , O B, =0
OX oy 0z
0 0 0
DOy TyZ+By:O
OX oy 0z
0
Oy Ol | OOy B, =0
OX oy 0z

’

Force
Equilibrium
Equations

2M,=0.2M,=0& 2M, =0 yields

Txy = Tyx ; Tyz = Tzy  Tax = Txz (2)



Stresses in 3D Strains in 3D

3\ ( A

gXX

Eyy

.
O
GW
O €42
{G} = < ¢ > {8} = X ;
z-xy 7/xy
Tyz 7/yz
kTXZ \yﬂ)

J



Strain — displacement relations.

Eyxx = OU

OX
Eyy = OV

oy
€,= OW

0z
Yxy= OV + Ou

OX oY
Yyz = OW + OV

oy 0z
Yox = OW + ou

OX 0z



Stress — Strain Relations:-

E E

Syy — Oy~ H (GXX + Gzz)

E E
€7z — 0, U (Gxx + ny)

E E
Yy = Ty | G Where

E = Young’s Modulus

Yyz = Tyd G G = Shear Modulus E

2(1+p)
Ve = Tl G u = Poisson’s ratio



The equations (6) can be written in matrix form as

[Exx\ ﬁ g A 0 0 0 \ [Gxx R
€y -u 1 -u O 0 0 Oyy
< €, \ =1|-p -u 1 O 0 0 C,,
Yoy El0 0 0 2(1+w) O 0 |1,
Vyz O 0 O 0 2(1+u) O Ty,
RE \\O 00 0 0 2(1+u)/ KTXZ )
{c}=1C] {o)
{c} = [C* {€]}
= [D] {€}

Here the matrix [D] Is called the constitutive
matrix given by



[D] =

1-p H u
1-2n  1-2p 1-2p
E poo l-poop
1+ 1-2pn 1-2p 1-2p
1 poo 1l-p
1-2pn 1-2p 1-2p
0 0 0
0 0 0
0 0

\O

Yo

o O




[D]

E

(1+p) (1-2p)

Symmetric

o




STRAIN DISPLACEMENT RELATIONS IN 2D

For small strains and small rotations. we have.

Cou b i o

Er . EI' > }f:n' — +
: &\H ) (9}; ; (9}_, &r

In matrix form.

e | [d/ax 0
se, +=| O QI@P{

U
y v

}ﬁDrEZﬂu
v.] 9/ d/x]"

From this relation, we know that the strains (and thus
stresses) are one order lower than the displacements. if the
displacements are represented by polynomials.

13



Displacements (i, v) 1n a plane element are interpolated
from nodal displacements (;. v;) using shape functions N; as
follows.

u| [N, 0O N, 0 -
v o N 0 N, -

where N 1s the shape function matrix, u the displacement vector
and d the nodal displacement vector. Here we have assumed
that # depends on the nodal values of # only, and v on nodal
values of v only.

—

1,
Vv,
w, or u=Nd (lI)

Vs

A

-

14



From strain-displacement relation (Eq.(8)). the strain vector
1S.

e=Au=ANd. or c=Bd

where B = AN 1s the sfrain-displacement matrix.

15



Ay

Linear Triangular Element

16



U,
v,
u| [N, O N, 0 N, 0 s |
{»}[0 N, 0 N, 0 Nj v,
1,
Lv3_.-

where the shape functions (linear functions in x and y) are

|

*er - ﬁ {(-fz V3 — X3, ) + (..1‘"3 — Vs )JC + (IE —Y )J;}
o1

N, = 5 Ay = 0) + (s = 33+ (3 = x3)y)
|

Ny = {0, =200+ (0 = )% + (3, = x,)y)

17



1

N, (X,y) = oA (a; +BiX +7Y)
oN, 0 oN, 0 ON, 0
OX OX OX
AN 2| 0 ON, 0 ON, 0 ON,
oy oy oy
ON, ON, ON, ON, ON, ON,
0y  OX oy OX oy oX

18



»=Bd = —

P

I

< C < C < C

[

|

N

N

w

w




Stress-Strain Relations

For elastic and 1sotropic materials, we have.

e | [1/E -v/E 0 ][o.
1€, 1= —-v/E 1/E 0 10, ¢
Vel L 0 0 1/G | T,
ce=E'o

where E the Young’s modulus. v the Poisson’s ratio
and G the shear modulus.

E
S 2(1+v)

{c} =[D] {e}=DBd

Note that. G

20



STRAIN DISPLACEMENT RELATIONS

{e}=Au=Bd

Where B = = AN

STRESS STRAIN RELATIONS

{0} = [D] 1€}= DBd



Now the strain energy stored in an element is
given by

”:%5 i dv:%_[gTDedv

=3jBTdTDdev
2V

c=Bd &oc=DBd




The work done by nodal forces Is given by
w=1 | Fd™ dv
2 \"

Equating strain energy to work done, for a
conservative system we get

1jBTolTDBolclvzljFolev
2V 2V

ie[KJid}={F}

where[K | = [ B" DBdv



1
N, (x) = 1-x/¢
N, (X) = X/l
dN, -1
dx |
dN, 1

2 NODED LINEAR ELEMENT

24



-

11 T
— ( — — B =< >
<| |> |1

~1
szBTDde=J-<|_>E<_—1}>Adx=
V )11 | |
|
"1 —1] 1 -1
jdx:E
-1 1) | |-1 1




2-D APPROXIMATIONS OF 3-D

PROBLEMS

here exists several problems in solid
mechanics that can be formulated as
three Dimensional problems and the
finite element technique can be used to
solve them.

» However it may turn out to be costly and
time consuming to perform Finite
Element Analysis of 3 D problems.

26



»In several practical situations the
geometry and loading may be such that
the problem can be reduced from 3 D to
2 D or from 2D to 1D.

» The two dimensional Iidealizations In
stress analysis include

. PLANE STRESS problems
Il.  PLANE STRAIN problems
. AXISYMMETRIC problems




PLANE STRESS: - A 3D problem can be
reduced to a plane stress condition If It IS
characterized by very small dimensions In
one of the normal directions.

A
J‘

R -

>
Ny LS :
% -

(M

Eqg.
A thin plate with a cut out subjected to In-
plane loading.

Thin plate subjected to in-plane loading



In these cases the stress components c,,
T & 1, are zero and it Is assumed that
no stress component varies across the
thickness. The state of stress is then
specified by o,, o, and t,, only, (functions
of Xx & y) and Is called plane stress. The
stress strain relations are given by
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PLANE STRAIN:- There exist problems
iInvolving very long bodies Il.e. a body
whose geometry and loading do not vary
significantly in the longitudinal direction.
Such problems are referred to as plane
strain problems.

Some typical examples include a long
cylinder such as a tunnel, culvert or buried
nipe, a laterally loaded retaining wall, a
ong earth dam, and a loaded semi-infinite
nalf space such as a strip footing on a soll
mass.

32






In all these problems, the dependant variable
can be assumed to be functions of only X & y
co-ordinates provided that we consider a
cross-section some distance away from the
two ends.
If we further assume that ‘w’ the displacement
component In the ‘z’ direction Is zero at every
cross-section, then the non-zero strain
components will be

5= 0U 8=V (7= AU+ OV

OX oy oy  oX

and the strain components



€, Yxzr YVyz WIIl vanish. The dependant stress
variables are o,, 6, & 1,, and the constitutive
relation for an elastic isotropic material is given

by

It is important to note here that only €, = O but

c, # 0.
£,=0,- W o,—po, =0
E E E

.0, =l (o4 +0y)



GXX ILI
Ey=—r—=0O
XX E E Yy
Ow M
E,=———=0
Yy E E XX
Ty 2(1+ )
yxy — E

Substituting o, = (o, + o)



Q Q
<

- = E
L Uxy) (1 + H) (1 — 2“)

[ (1-p)
vl

. 0

1
(1-p)
0

N

0
0

(1-2p) )
2

This Is the constitutive matrix for
plane strain element




AXISYMMETRIC  PROBLEMS:- Many

engineering problems Involve solids of
revolution (axisymmetric solids) subject to
axially symmetric loading.

Examples are a circular cylinder loaded by
uniform internal or external pressure or other
axially symmetric loading as shown In

Ay




Because of symmetry the stress components
are independent of the angular co-ordinate ‘@’
and hence all the derivatives with respect to ‘0
vanish and the components vy, , v,, are zero.
The strain displacement relation are given by

1

& =0U &€& =U & =0W ; = ou + ow
r 0o ¥ 1%z Yrz
r

OX 0z 0z o



Strains:

ou _u e =W
or r " oz
8w 8H
=()
a} aZ (}/IH )
1
—
r \ (r+u)d6
de /
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The constitutive relation iIs

Stresses:
FG,. ]
o, E
4 > =
0. (1+v)(1-2v)
._T.F‘:

v 0 e
1 0 £,
-y 0 |)
. L=
2 i _}/:‘: |

41




Problem 2:- Assuming plane stress conditions
evaluate the stiffness matrix for the element
shown in Fig. Assume E= 2 x 10° N/cm? and
u=0.3. u,=0.000, v,=0.0025, u,=0.0012,
v,=0.000, u; =0.0000 & v,=0.0025.

Y

3[(@.1)

(2,0)

1 [(0,-1)







A=%Xbxh=%x2x2=2

B, 0 B, 0 B3 O]
{€}+=1]0 vy, 0 v, 0 g
2A 71 Bi v By 73 Bs )

= {B] {d}
102 0-10
[B]=1 | 0-2 0 0 0 2
22) | 2-1 02 2-1

\ J




= 2x10°

T-(03)2 0 01-0.3

1l nu O
ul O
00 1-pu
. 2
103 0
031 O

2

N

J



Now we know that the stiffness matrix [K] is given by Iy [B]}[D] [B]dv
Asgsuming unit thickness 1e t =1 we get

[K]=A[B][D]{B]

o ™ _ _ _ _ _
-1 0 =2 |[1 03 0O -1 020-10
= (2)(2x10% 0 -2 -1 [|03 1 0 |%] 0-200 02
4(0.91) 20 0 0 1 035 -2-102 2-1]

0 0 2

-1 0 2

k\H{'} 2 '1./

6x3 3x3
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4 N

=1.099x10% | 600 325  -500 -350 -100 25

325 1087.5 -300 -175 25 -912.5

=500 -300 1000 0O =500 300

350 175 0 350 350 -173

-100 =25 500 3500 600 -325

N5 79125 300 -175 -325 10875
O6xX0

Note: In order to evaluate the element stress we can use the equation

1o} =[D] [B] {d}
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ZN/em

T

Bem — 4

Fax = Fax= (2*4)/2 = 4N

L] - — - =U
BC: us=vs=usy,



NATURAL CO-ORDINATE SYSTEMS

A Natural Co-ordinate system Is a local co-
ordinate system that permits the specification
of a point within an element by a set of
dimensionless numbers whose absolute
magnitude never exceeds unity



i.e. A | Dimensional element described by
means of its two end vertices (X; & X,) In
Cartesian space Is represented or mapped
on to Natural co-ordinate space by the line
whose end vertices &, & &, are given by -1 &
+1 respectively.




ADVANTAGES OF NATURAL
CO-ORDINATE SYSTEMS

) It IS very convenient in constructing
Interpolation functions.

Il) Integration involving Natural co-ordinate

can be easlily performed as the limits of
the Integration is always from —1 to +1.
his Is In contrast to global co-ordinates
where the limits of Integration may vary
with the length of the element.




i) The nodal values of the co-ordinates are
convenient number or fractions.

IV) It Is possible to have elements with curved
sides.



| D elements

114 =
&
2

L

1
14 85} U3

» & .

1 2 3
14 A5} Uz Uy

- > » &

1 2 3 4
Wi E}l W2 E}E

L &

2 NODED LINEAR ELEMENT

3 NODED QUADRATIC ELEMENT

4 NODED CUBIC ELEMENT

2 NODED BEAM ELEMENT



1 1 2
2

Constant strain triangular element Bilinear Rectangular element

Linear strain triangular element  Eight noded quadratic quadrilateral elemen

Il D elements



1 2

Linear Quadrilateral element
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Tetrahedron: I D elements

— \ / — o N/

-

. P =
linear (4 naﬁey quadrartic (10 nodes)

Hexahedron (brick):

linear (8 nodes)

Penta:

[inear (6 nodes) quadratic (15 nodes)

56



l;:.:

2 NODED LINEAR ELEMENT

(40 85} o1 =2
r—s —
1 2 i 2
X X
2
&= -1 &=0 E3=1
et o o ')
3 1 2 3
& )
3 4
&= -1 & =-1/3 &3=1/3 =
o O O 9D
1 2 3 4

1

57



| - D Lagrangian Interpolation

functions In Natural Co-ordinates
Linear Element:

L, = (&-&))

(€1 - &) Lo
Substituting &, = -1 & £,= +1, we get

& =
Ll =1 =2
ot - .
2 1 Y.

1

[a—y

MK -

L,=E1)=1-¢ =1 (1-9
2

11 2
L,=(5-&) = (E+1) =1 (1+g)

(E,—&) +1+1

In general L; = %2 (1 +£¢))

1
2




3 Noded Quadratic Element
&= -1 E=0 &=1

ci=-1 S,=0 &=1 v 2 3

L1 =(6-8)(E-8&)= (6-0)E-1) = &2(5-1)
(C1—&)(E1— &) ((1-0) (-1-1)
= -&/2(1-)

L, =(E-E)E-&)=E+1)(E-1) =(1-¢ @A+
(E,—&1) (- &) (0+1) (0-1)

L;=(E-E)E-E)=(E+1)E-0) =¢&21+¢)
(E3—E&1) (&— &) (1 +1) (1-0)




4 Noded Cubic Element:

1=-1 &= &= g =1
12 (B EE-8) o=t s s

Q:
O D
4

G -&)E -E)E -C)

= (HW)EANE-1) =- 916 (B+E)(L-E)(% - E)
(1 +A) 1)1 1)

1

L2 = (E- E3)(E- E4)(E - &)
(&2 — E(E2 —E3)(E; — &4)

= -27/16 (1+£) (1 - ) (5 )




L= (& E)(E1- &)(E - &)
(€3 — E)(E3—E2)(E5 — )

= 27/16 (1+&)(1 - £)(Va + &)

L, = (& E)(E- E)(E - &)
(€4 — E)(84—E2)(E4 — &)

= -9/16 (%+C)(5 - £ )(1 + E)




Lagrangian Interpolation polynomials for

rectangular Element: (Natural Co-ordinates)
Bi-Linear rectangular Element:

Nl (g) - @ - @2 — a -1=1 — é {"'-*'2 {;1,+1}
1—¢ -1-1 2 4 3

Nl(n)=n'1”l4: '1:1-1’] ¢
N1 — T4 -1 -1 ? .1 2 |

2Ny (Em) =Ny (€) Ny (m) o
= -8 f-n

\2'] \2]
=1/4(1-&8)(1—-n)




N, (Em) = (E-&p) (N -13)
(& — &) (Mo —M3)

=(E+1)(m-1) =%1+E@d-n)
(1+1)(-1-1)

N3 (Em) = (E- &) (N - M)
(€3 —&4) N3 — M)

=E+1)(n+l) =%@+E(1+n)
(1+1) (1+1)




Ny (Em) =(E-&3) (N -My)
(€4 —&3) (Ng—My)

=(E-1) (n +1)
(-1-1) (1 +1)

=14 (1-8) (1 +n)



NINE NODED QUADRATIC
QUADRILATERAL ELEMENT

9

® ¢ ®
4+ @ 5@ ‘@
® ® ®

We shall now proceed to derive the shape
functions for a nine noded quadratic
guadrilateral element using Lagrangian
polynomials, in natural co-ordinates.



Ny (€)= (€-&)(E - &)
(€1 —&2) (&1 — &3)

= (£-0)&-1) =¢&(E-1)
(-1-0) (-1 -1) 2

Ns(m)= Mm-ngmn-n,)
(M1 —M4) N1 —M7)

= M-0(Mm-1) =n(n-1)
(-1-0) (-1 -1) 2

N1(En) = N; (&) No(n) = ¥4 (E%-E) (m°n)
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N,(En) =2 (1 - £%) (n*-n)
N3(En) = ¥4 (€% + &) (n°-n)
Ny(Em) =Y2 (&2 -E) (1 -n?)
Ns(Emn) = (1-&%) (1-n°)
Ng(Em) = Y2 (€2 + &) (1 - 1?)
N,(En) = %2 (€2- &) (n* + M)
Ng(Emn) =%2 (1-&%) (n*+n)
No(En) = %2 (€2 + &) (n°+ )



Shape functions for Eight noded quadrilateral
element :

The equations to the various lines connecting
the various nodes is given by

inel-2-3—1+n=0 .
ine6-7-8—1-1=0 T 7
inel-4-6—1+&=0 5 9 T
 ine3-5-8—1-£=0 ¢ o o
1 2 3

Line2-5 _ 1-&£+n=0
Line4d -7 — 1+E-1n=0
Line7-5 _, 1-&£-11=0
Line4-2 — 1+E+n=0
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'0 obtain the shape function N; we identify
the equation to those lines not passing
through node 1 and express N, as a product
of these line equations.

l.e.lines6-7—-8,3-5—-8and4 -2
2Ny =C(1-m)(1-8@Q+E+n)

AN, (-L,-1)=C1+1)(1+1)(1-1-1)=1

C=-1/4

S Ny(Em)=-Y4(1-n)1-8)A+S+m)



Similarly for N, the linesare6—-7-8,1—-4 —
6and3-5-8

Ny =C(1-m)(1+5)(1- <)
=C(1-n)(1-¢&)

N, (0,-1)=C(1-0)(1+1)=1
C=%

SN, (EM) =% (1-E2)(1-n)

Nz (€n) =7 (1+8)(1-n)(-1+S-m)



NyEm) =%2(1-¢) (1-n?)

Ns Em) =%2 (1+8)(1-n?)

Ng (Em) =72 (1- &) (1 +m)(-1- &+n)
N, Em) =% (1- &) (@1 +n)

Ng (Em) =74 (1+&) (1 +m)(-1+&+n)



ISOPARAMETRIC ELEMENTS

I

x= X XL
i=1

For a linear transformation r = 2
X=X L () XL, (E)

=X, (-8 +x,(1 +¢)
2 2




For example an element whose x co-ordinates
are given by x, =3 &Xx, =7

Thenx; =X, (1-&)+ X, (1 + &)
2 2

3= 3(1-§)+7(1+E)

2 2
or 6=3-35+ 7+ 7§
or4g =-4
oré=-1

le the point x; = 3 transforms to £ = -1 In natural
co-ordinate space



similarly X, =x; (1-&) + X,(1 +&)
2 2
7= 3(1-8 +7(1+8
2 2
14=3 -3+ 7+7¢
4E=4 or E=1
. The point x, = 7 In Cartesian space gets
transformed to &, = +1 in Natural co-ordinate
space. So the transformation

r
X =2 «o; (€)transforms the geometry
=1,



Similarly we have the approximation of the
field variable in terms of shape functions
expressed as S

u= 2 U N; (&)



Jacobian of Transformation

Among the 3 cases given above Isoparametric
are more commonly used due to their
advantages which include the following:

) Quadrilateral elements In (X,y) coordinates
with curved boundaries get transformed to a
rectangle of (2 x 2) units in (§, nn) co-ordinates

) Numerical Integration IS more easily
performed as limits of integration vary from -1
to +1 for all elements.



We have seen that determination of the stiffness
matrix requires the computation of derivative of
shape functions with respect to x’. However as the
shape functions (Interpolation function) are
expressed In terms of £ & n co-ordinates (natural co-
ordinates) we use the chain rule.

dN, = dN, d& =dN, 1
dx dg dx dg dx/dg
=dN, 1 =J-1 dN,

dz 3 de



Here J = dx/ d&¢ is the ‘Jacobian’ of
transformations from Cartesian space to
natural co-ordinate space. It can Dbe
considered as the scale factor between the
two co-ordinate systems.



Jacobian of transformation for 2 Noded
Linear Element

For a 2 Noded element the shape functions
are given by

N; (€)= (1-9)
2

N, (€) = (1+<)
2



Now X = N;x; + N, X,
=(1-8) x + (1 +E) %,

2 2
dx=J =-1x;,+ 1 X,
ola 2 2
= (X3 —=Xy) = L
2 2

Here (X, — X,) represents the length of the
element. So the Jacobian of transformation
for a 2 noded element is given by L/2



3- Noded Quadratic element:-

N, =-&/2 (1- &)

N, = (1-¢) (1+S)

N, = &/2 (1+ ¢)
=N;u;+N,u,+Nyu; &

= Nj; Xy N, X, + Nj X;

u
X

J=dx = [% 2g1+2§] X,
de 2 2
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Stiffness Matrix for a 2 Noded Axial

Element
[K] = J BT D BAdXx

B]=du =dN =1 dN

dx dx J dg
=2 (dN, d_NZJ
L{dE d&
=2 (d (1-¢) d @J
L dg 2 de 2
=2 [i LJ [—1 _1J
L (2 2) = |L L



£
i

AR
¢ A

ISOPARAMETRIC TRANSFORMATION

©

NUMERICAL INTEGRATION

LECTURE 12



ISOPARAMETRIC ELEMENTS

I

x= X XL
i=1

For a linear transformation r = 2
S X=X Ny (&) + X, Ny (E)

=X (-8 +x,(1 +¢)
2 2




—"




For example an element whose x co-ordinates
are given by x, =3 & x, =7

Thenx; =X, (1-&)+ X, (1 + &)
2 2

3= 3(1-§)+7(1+E)

2 2
or 6=3-35+ 7+ 7§
or4g =-4
oré=-1

le the point x; = 3 transforms to £ = -1 In natural
co-ordinate space



similarly x, =X, (1-&) + X, (1 +§)
2 2
7= 3(1-¢ +7(1+¢)
2 2

14=3 -3+ 7+7¢

4E=4 or E=1
-.The point x, = 7 In Cartesian space gets
transformed to &, = +1 in Natural co-ordinate
space. Similarly every point in X space
transforms to a corresponding point In &
space




So the transformation

r

X =2N. x; (§) transforms the geometry

=1
from Cartesian space to Gaussian space

Similarly we have the approximation of the
field variable Iin terms of shape functions

expressed as <
u= % u;N;(§)

=1



geometric transformation

‘s’ - the number

lere ‘r’ - the number of nodes used for

of nodes used for
approximation of field variable.

In general the polynomial used for geometric

transformation neec

order as that useo
approximation.

NOt
for t

ne of the same

ne field variable



In other words two sets of hodes exists for
the same region or element.

»0One set of nodes for co-ordinate
transformation from Cartesian space to
natural co-ordinate space

»0One set of nodes for approximating the
variation of the field variable over the
element.



Depending upon the relationship
between these two polynomials
elements are classified into three
categories as

»sub parametric elements r<s
»1so-paramatric elements r=s

>super-parametric elements r>s



sub

[ @] Iso 3 ® super

—/
.|

r- nodes for geometric transformation

s- nodes used for field variable approximation




A=80cm’

Py P,
|

X X
=300 cm |

Vo A=20 em’

10 N




A=80cm’

VAV AV A

I=300cm




lcm

an
k =3Wem°C h =01 H’Z"fﬂf D(T
I=8cm = fcm —
® o & o o
7 2 3 4 5



e ¢ &« € 3 6 © 3 L
bi 2 3 4 5
Field variable approximation
- 3 C {3 O
Vi 2 3 4 5

Geometric Transformation

14
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Jacobian of Transformation

Among the 3 cases given above Isoparametric
are more commonly used due to their
advantages which include the following:

) Quadrilateral elements In (X,y) coordinates
with curved boundaries get transformed to a
rectangle of (2 x 2) units in (¢, nn) co-ordinates

)  Numerical Integration Is more easily
performed as limits of integration vary from -1
to +1 for all elements.



We have seen that determination of the
stiffness matrix requires the computation of
derivative of shape functions with respect to
'x. However as the shape functions
(Interpolation functions) are expressed In
terms of &€ & m co-ordinates (natural co-

ordinates) we use the chain rule.

dN, =dN,; d& =dN; 1
dx d& dx d§ dx/dg
=dN, 1 =J1 dN,

dg  J dg



Here J = dx/d§ is the ‘Jacobian’ of
transformation from Cartesian space to
natural co-ordinate space. It can Dbe
considered as the scale factor between the
two co-ordinate systems.



Jacobian of transformation for 2 Noded
Linear Element

For a 2 Noded element the shape functions
are given by

N; (€)= (1-9)
2

N, (€) = (1+<)
2



Now X = N;x; + N, X,
=(1-8) x + (1 +E) %,

2 2
dx=J =-1x;,+ 1 X,
ola 2 2
= (X3 —=Xy) = L
2 2

Here (X, — X;) represents the length of the
element. So the Jacobian of transformation
for a 2 noded element is given by L/2



3- Noded Quadratic element:-

-5/2 (1- ¢)

(1-¢) (1+S)

Ef2 (1+ &)
N,u;+N,u, +Nzuy &
N; X7 +N, X, + Nj X3

= -&/2(1- E)xy + (1- §)(A+ E)x; +&/2(1+ E)Xs

N
I

J:d_x:[-l +28 -2¢ 1+2§] X,
dé 2 2 J -




Jacobilan of transformation for 2-D

elements:-

In the case of two dimensional elements the
shape functions N, are functions of both x & .
When we obtain the same using Natural co-

ordinates the shape functions will
functions of & & m. In order to derive t
stiffness matrices we need to evaluate t

o8[S
ne

e

derivatives with respect to x and y. We

therefore apply the chain rule to get
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ON, = 0N, ox + N, oy

o ox o0 oy O0o&
ON: = ON. ox + 0N, oy
on OX on oy oOn
or in Matrix notation
ON;] (ox oy ||oN.
o¢ ot 0O¢& OX
> =
ON. ox oy ||oN,
on ) (on on Jloy.




ONI |=[J] ONI |  ------ (2)
<f > <8—X>
oNi| [N
on | L oY

Here ‘J’ Is the Jocobian of transformation
from Cartesian to Gaussian space. This
gives the relationship between the
derivatives of N, with respect to the global
and local co-ordinates.

From (2) we obtain



GYEN R e— 3)
x|

ON;[  10Ni[

ox on

Hence the Jacobian Martrix [J] must be
non-singular

4 N
[J]=| ox oy
N (4)
oX oy

on o,




We know thatx= 2 N. (En) X,  --—--- (5)

=1

y= 2 N (Em)Y

=1

L ox = 3 xON| dy =% y; ON, —- (6)
o¢ =1 0t | 0 =1 O¢,

ox = 2 % ON; | gy =2y oN_
on =1 on on i=1 On




Substituting equation (6) in (4) we get

F=Ex N, Ty N,

¢ ¢

2. X; ON; 2y, oN;

o o
=ON; ONp ONg ... 0Ny | (X0 Yy
0% 05 0 & % Y,
ON; ON, ONj ..... N, X Y

on on on on /) U Y



In general the Jacobian of transformation
In 3D Is given by

x oy a
05 05 0¢
J]=| X Y 2
on on 0On
ox oy o
oy Oy Oy






Problem:

Evaluate the Cartesian co-ordinate of the
point P which has local co-ordinates £ = 0.6
and n = 0.8 as shown in the Figure.

Y

A

3 (6,8)
4 (4,5)

2 (9.4)

1 (3,2)

—=== X



4 (4,5)

1 (3.2)

3 (6,8)

2 (9.4)

—= X

ra

' _r ey
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Given: Natural co-ordinates of point P

£E=0.6
n=0.8
Cartesian co-ordinates of point 1,2,3 and 4
X, =3; y, =2
X, =9; y, =4
X, =6; Y, =8
X, =4; Y, =2



To Find: The Cartesian co-ordinates of the point

P (X,y)
Solution:

Shape functions for quadrilateral element are,

N, = (0-2) -7

N, =L+ &) @)

N, =%(1+ g)(1+n)

N, = (-2) @)



Substituting the values

— N, (0.6,0.8) :% (1-0.6)(1-0.8)=0.02

- N2(0.6,O.8)=%(1+ 0.6)(1-0.8)=0.08

N, (0.6,0.8) == (1+0.6) (1+0.8)=0.72

A

- N4(o.6,o.8):%(1—o.6) (1+0.8)=0.18



Co—ordinate, Xx=N,;X, + N, X, + N, X, + N,X,
=0.02(3) +0.08(9)+ 0.72(6) + 0.18(4)
X =25.82

Co—ordinate,y=N,y,+N,y, + Ny, +N,y,
=0.02x(2) +0.08(4) + 0.72(8) + 0.18(5)
y =7.02
Co — ordinates are ((x, y) = (5.82,7.02))



Problem 1
Evaluate [J]at8=77=§ for the linear
guadrilateral element shown in Fig.

Y

A 3 (8.10)
4 (3.8)

2 (7.9)

1 (4.4)

=== X




4 (3.8)

1 {4.4)

3 (8.10)

2 (7.5)

ra
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Given:
Natural co-ordinates at point, P

1 1
—1_05:5n=-=05
°=5 =5

Cartesian co-ordinates of point 1,2,3 & 4
X, =4, y, =4
X, =1; Y, =5
X; = 8; y, =10
X, =3; Y, =8



To Find:1.Jacobian matrix [J].

Solution: Jacobian matrix for quadrilateral

element Is given by,

[J]

o
oG
OX

on

[J]

J11

_J21

J12
J22_




3y = 71X+ L)%, + @t )X = (L 1),

=g A=Y+ =0y, + @+ )Y, ~ @+ )y, ]
Y= =%~ £ + L+ £ + (- Ox,]
1

J =Z[—(1—~f§)y1 —-(@+8)y, +@+8)y; +(1-S8)y,]



J., (0.5,0.5) =%[—(1— 0.5)4+(1—0.5)7+(1+0.5)8—(1+0.5) 3]
=2.25

J., (0.5,0.5) =%[—(1—0.5)4+(1—0.5)5+(1+ 0.5)10—(1+0.5)8]
=0.875

J21(0.5,o.5)=%[—(1—0.5)4—(1+ 0.5)7+(L+0.5)8+(1—0.5)3]
=0.25

J,, (0.5,0.5):% [~(1—0.5)4—(1+0.5)5+(L+0.5)10+(1—0.5) 8]
=2.375



2.25 0.875

025 2375



Stiffness Matrix for a 2 Noded Axial

Element
[K] = J BT D BAdXx

B]=du =dN =1 dN

dx dx J dg
=2 (dN, d_NZJ
L{dE d&
=2 (d (1-¢) d @J
L dg 2 de 2
=2 [i LJ [—1 _1J
L (2 2) = |L L



+1 .
K]= A] {—1/|_ E <-1/L UL> Jd&
1L

+1
=EA[F1/L | <-1/L 1/L> L/2 d&
1/L

Aj[l/LZ -1/L2} de
2 L L1212

- EA E_ﬂjdé - EA {1 -1}
oL 1) A 11



Problem:
For the four noded rectangular element

shown If Fig. determine the following:
1) Jacobian matrix

I1) Strain-Displacement matrix
ll)Element stresses

Take E = 2 x 10° N/mm?; v = 0.25;

u =[0, 0, 0.003, 0.004, 0.006, 0.004, 0, O]T
E_,: O: n = 0)

Assume plane stress condition.



(2,1)

(2,0)
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Cartesian co-ordinates of point 1,2,3 & 4

X, =0; y, =0
X, =2; y, =0
X3 = 2; ys; =1
Xy =0; y,=1

Young’s modulus, E =2 x 10°> N/mm?
Poisson’s ratio v = 0.25



0.003

. 0.004

Displacement, u =- -

0.006

0.004
0

0

.

Natural Co —ordinates, £ =0, n =0

To Find: 1. Jacobian matrix, J.
2. Strain Displacement, [B]
3. Element stress,



Solution: _ _
[J ]: Jll J12
_J21 J22_
3y =7 L=+ A7) + (L )X~ @ X, ]
1

Jis =Z[—(1—77)y1+(1—77)y2+(1+77)y3—(1+77)y4]

le[ L-e)x,—A+e)X, +L+e)x; +(L—-¢g)X,]
j[ (- &)y, —(L+ )y, + L+ £)ys + (L &)Y, ]



J11(0,0)=%[0+2+2—0] ; J12(0,0)=3[0+0+1—1]
-1 -0

JZl(O,O)zi[O— 242+0] ; 322(0,0)% [—0—0+1+]



Jll J12

J =
:>[ ] _‘]21 ‘J22_

1 0

Jacoblan matrix,[J] =
0 05

—[J| =1x0.5-0 = 0.5



Strain- Displacement matrix for quadrilateral
element is,

=[B]=—=| O 0 —Jy Jiy |X=
__‘le ‘J11 ‘Jzz _‘le_

—-@1-n) 0 (1-7) 0 (@+nmn) 0 —(@+nm) O
—(1-¢) 0 —(1+¢) 0 (1+¢) 0 (1-¢) 0
0 -(1-n) 0 (1—mn) 0 (@d+n) 0 - (1+n)
0 —(1-¢) 0 —(1+¢) 0 1+ ¢) 0 1-¢&) |




=[B]

0.5

T 05x4

05
0.5x4

—1

-0.5

0
—2
-1

1
0
—2

-1 0
-1 0

0
0

1
-1
-1 0
-1 0

0

0

1
-1

05 0 05 O

0

-1 0.5

0

-1 0

1

1 0

1
0.5

-1

-2 0 2 0

1

2 1

2

o o - BB

-0.5
0
1

0
2

-1

R — O O

) -
1
-05




[B] =0.25

-1
0

| —2

0 1
-2 0
-1 -2

Element stress, ¢ =

Stress — strain relationship matrix,

E
[D]=7

_V2

o < B
O <

N ‘

0 1 0 -1 0
-2 0 2 0 2
1 21 2 -1
[D] [B] {u}

0

0

1-v



2 x10°
1-(0.25)°

=213.33x10°| 0.25

=213.33x10° x0.25




4 1
[D]=53.33x10° |1 4
0 0

Substituting the values in Element stress
equation



4 1
= {o}=53.33x10° |1 4 O
0 0

1
-1 0 1 0 1 0 -1 O]
x025| 0 -2 0 -2 0 2 0 2
-2 -1 -2 1 21 2 -1




4 -2 4 -2 4 2 -4 2
-53.33x10°x025(-1 -8 1 -8 1 8 -1 8
-3 -15 -3 15 3 15 3 -15




0.036

{6}=13.333x10°%{ 0.009

()= -

(

430
120

280

.

3

0.021

N /m?

J



NUMERICAL INTEGRATION

In the Isoparametric formulation of higher
order elements we see that the strain-
displacement matrix [B] is given by
[B]=du=dN [E]=1 d[N]

dx dx J dg

S1[dCEE 1-E Le)
Jldg 2 2

61



Here J=(-1+2¢ -2¢ 1+ 2€)
2 2
Therefore Matrix [B] Is a function of &, with

polynomials in & in its denominator because of
the 1/J factor. Hence the equation (A) cannot
be integrated to give on the solution. Hence
we resort to numerical integration.




So evaluation of integrals of the form

b
] F(x) dx becomes difficult or impossible in

a

cases where the integrand F has functions of
X In both numerator denominator.

The basic idea behind whatever numerical
iIntegration technique we may employ is that of
obtaining a function P(x) which is both a
suitable approximation of F(x) and simple
enough to integrate.



Referring to Fig the variation of F(X) Is

b
shown. Evaluation of the Integral | F(x) dx
will yield the area under the F(x) curve
between points x, (=a) & X, (= b).

y=F(x)

B




y=F(x)

—
b

“Trapezoidal rule”,
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Trapezoidal Rule

Simpsons Rule
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parabolas

T

Y

F1

Y2

Y

Y4

Vs

Yé

Ax Ax Ax Ax Ax Ax



Gauss Quadrature:- Amongst the several
schemes available for evaluating the area
under the curve F(x) between two points the
gauss quadrature method has proved to be
most useful for iIsoparametric elements. As In
Isoparametric formulation, the limits of the
integral are always from -1 to +1, the problem
IN gauss integration Is to evaluate the integral

+1
= JF() de.
-1



The simplest and probably the crudest way to
evaluate the integral is to sample or evaluate
F(£) at the mid point of the interval and to
multiply this by the length of the element
which is 2" [because &, = -1 & §, = 1 &
(& —&1) = 2]

SJFdx=1=21

This result will be exact only If the actual
function happens to be a straight line.



—==-

F(0)

] ¢ - +1
1 £ =0

One point formula

—
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We can extend the same to take two sampling points
or three etc.Generalization of this relation gives
+1
= JFE) dg = w,f, + wof, + ... w,f
-1
= wif (&)
=1
Here w, is called the ‘weight’ associated with the it
point and n Is the number of sampling points. The
Table (1) gives the sampling points and the
associated weights (w;) for Gauss quadrature.

N



No.of |Location Weight W,
points
1 |& =0.00000 2.00000
2 1§,,6,=20.57735 1.000000
3 [§,,6,=10.77459 0.55555
&, = 0.00000 0.88888
4 1&,,£,=+0.8611363 |0.3478548
&,65 =10.3399810 |0.6521451




Thus to approximate the integral |, the
function f(€) Is evaluated at each of several
locations &;, and each f(§;) i1s multiplied by
the approximating weights w. The
summation of these products gives the
value of the integral. The sampling points
are generally located symmetrically with
respect to the center of the Interval.
Symmetrically paired points have the same
weight wi;.



As an example consider the evaluation of the
Integral | using 2 sampling points i.e. n = 2.

| ~ (1.0) (fat & = - 0.577350269189626) +
(1.0) (f at & = + 0.577350269189626)

- E-’ E_’ +1

2
=- 057735 =+057735



-1 ‘t:, ‘E:, +1

1 2
= - 057735 =+057735



In general If we know that the integral to be
evaluated Is of order p then the number of
sampling points required n Is given by the
relation

2n-1=p

The calculated number of sampling points can
be rounded off to the nearest integer



i=Ne:Nas

En=0.0 En=+-0.57735 &n=0.0

JANVAWAY

_ - Point a;
o, =173 %p=1/20 «=0.51685

[=0.03158

Paint b
c=0.108103
(=0.0.4434



Problem 1
Evaluate the integral | :j(2+ X+ x?)dx and

: -1,
compare with exact solution.

1
Given: Integral, |=j(2+ X+ X2) dx

-1

= f (X)=2+ X+ X°

To Find: The integral | by using Gauss

gquadrature.



Solution:
We know that , the given integrand is a
polynomial of order 2.

So,2n-1=2
— 2N =3
—>nN=15=x"2

For two point Gaussian quadrature,

x1:+\/g =0.577350269 w, =1

X, =— \/I =—0.577350269 w, =1
3



f(X) =2+ x+X°
f(X,) =2+X%X, +X
=2+(0.577350269) + (0.577350269)°

f(x,) = 2.9106836
w, f(x,) =1x2.9106836
=w, f(x;,) =2.9106836



f(X,)=2+X,+ X5
=2-(0.577350269) + (—0.577350269)°
f(x,) =1.755983
w, f (X,)=1x1.755983
w, f(x,)=1.755983

w, f(x,)+w, f(x,)=2.9106836+1.755983
=4.666666

1
:j(Z X+ X°)dx =4.666666
1



Exact Solution:

j(2+x+x)dx 2[x]; 1[x ]j+1[x]

=2[1-(=DI+ 5[1— L] +§[1— (=1)]
=4.666666



Using Gauss Quadrature evaluate the
following Integral using 1 2 and 3 point
Integration.

1

: sin s
I) J 1:115 5
s(1.s) 1) I

5[15]




n

FEn)= X

=1

£ n=0.57735

F(&imi) ww,



